Warm up: Show that if a^{2} if even then a is even.
x is even' ff $\exists y$ st $y \in \mathbb{Z} \wedge 2 y=x$.
Think about all af the proof techniques weknow.

Number Theory Proofs

Announcements

HW5 is coming out this evening.
It's due Monday November 9th
It's also a little longer than usual, so don't think this is an excuse to put it off.
"Part I" of the homework is on number theory - these slides have everything you need.
"Part II" is on induction, the topic for next week.
We want to give you feedback on induction proofs before the midterm, hence the different setup.

Announcements

Everyone gets an extra late day!
Why?
HW3 grades aren't back out yet, we want to make sure you don't repeat mistakes if you learn from them. They'll be out this afternoon.
And HWs 3 and 4 seem to be taking some folks longer than anticipated.
Use this as a learning opportunity; 311 homeworks are not like calculus homeworks where it's easy to predict exactly how long it will take. Get started early.

Announcements

Daylight Saving Time ends this Sunday.
If you're in a part of the U.S. that observes Daylight Saving Time, enjoy your extra hour of sleep.

If you're not...the time of everything relative to you probably shifts by an hour Sunday (Seattle time). :/

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward
$\underline{\operatorname{gcd}(35,27)}$

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$$
\left.\begin{array}{rlrl}
\operatorname{gcd}(35,27) & =\operatorname{gcd}(27,35 \% 27) & =\operatorname{gcd}(27,8) \\
& =\operatorname{gcd}(8,27 \% 8) & & =\operatorname{gcd}(8,3) \\
& =\operatorname{gcd}(3,8 \% 3) & & =\operatorname{gcd}(3,2) \\
& =\operatorname{gcd}(2,3 \% 2) & & =\operatorname{gcd}(2,1) \\
& =\operatorname{gcd}(1,2 \% 1) & & =\operatorname{gcd}(1,0)
\end{array} \quad \begin{array}{ll}
35=1 \cdot 27+8 \\
27=3 \cdot 8+3 \\
8=2 \cdot 3+2 \\
3=1 \cdot 2+1
\end{array}\right]
$$

Extended Euclidian Algorithm

Step 1 compute $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$; keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$$
\begin{aligned}
& 35=1 \cdot 27+8 \\
& 27=3 \cdot 8+3 \\
& 8=2 \cdot 3+2 \\
& 3=1 \cdot 2+1 \\
& \hline
\end{aligned}
$$

Extended Euclidian Algorithm

Step 1 compute $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$; keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$$
\begin{aligned}
& 35=1 \cdot 27+8 \\
& 27=3 \cdot 8+3 \\
& 8=2 \cdot 3+2 \\
& 3=1 \cdot 2+1 \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& r m q n \\
& \begin{array}{l}
8=35-1 \cdot 27 \\
3=27-3 \cdot 8 \\
2=8-2 \cdot 3 \\
1=3-1 \cdot 2
\end{array}
\end{aligned}
$$

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$$
\begin{aligned}
& r m q n \\
& \begin{array}{l}
8=35-1 \cdot 27 \\
3=27-3 \cdot 8 \\
2=8-2 \cdot 3 \\
1 \\
1
\end{array}=3-1 \cdot 2 \\
& \operatorname{gud}(35,27)
\end{aligned}
$$

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$$
\begin{aligned}
& 8=35-1 \cdot 27 \\
& 3=27-3 \cdot 8 \\
& 2=8-2 \cdot 3 \\
& 1=3-1 \cdot 2
\end{aligned}
$$

$$
\begin{aligned}
& 1=3-1 \cdot 2 \\
& =3-1 \cdot(8-2 \cdot 3) \\
& =-1 \cdot 8+2 \cdot 3
\end{aligned}
$$

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$\operatorname{gcd}(27,35)=13 \cdot 27+(-10) \cdot 35$

$$
\begin{aligned}
& c d(35,2-7) \\
& R=3-1 \cdot 2 \\
&=3-1 \cdot(8-2 \cdot 3) \\
&=-1 \cdot 8+3 \cdot(3) \\
&=3 \cdot 27-10(27-3 \cdot 8) \\
&=3 \cdot 27-10(35-1 \cdot 27) \\
&=13 \cdot 27-10 \cdot 35
\end{aligned}
$$

When substituting back, you keep the larger of m, n and the number you just substituted.

$$
\operatorname{gcd}(35,27)=S \cdot 35+t \cdot 27
$$ Don't simplify further! (or you lose the form you need)

So...what's it good for?
Suppose I want to solve $7 x \equiv 1\left(\bmod \eta_{0}\right)$
$7 x=3($ nod en $)$
$37 x=35(\mathrm{mon})$
$x=35(m \cdot d r)$

Oh wait. We want a number to multiply by 7 to get 1 .

If the $\operatorname{gcd}(7, \mathrm{n})=1$
Then $s \cdot 7+t n=1$, so $\underbrace{7 s-1=-t n}$ ie. $n \mid(7 s-1)$ so 7 (s) $\equiv 1(\bmod n)$.
So the s from Bézout's Theorem is what we'should multiply by!

$$
\forall x シ 1(\bmod n) \quad S \nexists x=1 \cdot 5(\bmod n) \quad x \equiv S(\bmod n)
$$

Try it
Solve the equation $7 y \equiv 3(\bmod 26)$

What do we need to find?
The multiplicative inverse of $7(\bmod 26)$

Finding the inverse...

$$
\begin{aligned}
\underline{\operatorname{gcd}(26,7)} & =\operatorname{gcd}(7,26 \% 7)=\operatorname{gcd}(7,5) \\
& =\operatorname{gcd}(5,7 \% 5)=\operatorname{gcd}(5,2) \\
& =\operatorname{gcd}(2,5 \% 2)=\operatorname{gcd}(2,1) \\
& =\operatorname{gcd}(1,2 \% 1)=\operatorname{gcd}(1,0)=1 .
\end{aligned}
$$

$$
\begin{gathered}
\begin{array}{c}
1=5-2 \cdot 2 \\
=5-2(7-5 \cdot 1) \\
=3 \cdot 5-2 \cdot 7 \\
= \\
= \\
=
\end{array}+36-36-11 \cdot 7
\end{gathered}
$$

-11 is a multiplicative inverse.
We'll write it as 15 since we're working $\bmod 26$.

$$
\begin{aligned}
& 26=3 \cdot 7+5 ; 5=26-3 \cdot 7 \\
& 7=5 \cdot 1+2 ; 2=7-5 \cdot 1 \\
& 5=2 \cdot 2+1 ; 1=5-2 \cdot 2
\end{aligned}
$$

Try it
Solve the equation $7 x \equiv 3(\bmod 26)$

What do we need to find?
The multiplicative inverse of $7(\bmod 26)$.
$157 ; y \equiv 15 \cdot 3(\bmod 26)$

$$
y \equiv 45(\bmod 26)
$$

Or $y \equiv 19(\bmod 26)$
\longrightarrow So $26 \mid 19-y$, ie. $26 k=19-y$ (for $k \in \mathbb{Z}$) ie. $y=19-26 \cdot k$ for any $k \in \mathbb{Z}$
So $\{\ldots,-7,19,45, \ldots 19+26 k, \ldots\}$

Multiplicative Inverse

The number b is a multiplicative inverse of $a(\bmod n)$ if $b a \equiv 1(\bmod n)$.

If $\operatorname{gcd}(a, n)=1$ then the multiplicative inverse exists.
If $\operatorname{gcd}(a, n) \neq 1$ then the inverse does not exist.
Arithmetic $(\bmod p)$ for p prime is really nice for that reason.
[Sometimes equivalences still have solutions when you don't have inverses (but sometimes they don't) - you'll experiment with these facts on HW5.

Proof By Contradiction

Proof By Contradiction

Suppose the negation of your claim.
Show that you can deiveralse (i.e.

If your proof is right, the implication is true.
So \neg claim must be False.
So claim must be True!

Proof By Contradiction

Claim: $\sqrt{2}$ is irrational (i.e. not rational).
Proof:

Proof By Contradiction

Claim: $\sqrt{2}$ is irrational (i.e. not rational).
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.

But [] is a contradiction!

Proof By Contradiction

Claim: $\sqrt{2}$ is irrational (i.e. not rational).
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $\mathrm{t} \neq 0$ and $\sqrt{2}=s / t$
Let $\underline{p}=\frac{\mathrm{s}}{\operatorname{gcd}(\mathrm{s}, \mathrm{t})}, \mathrm{q}=\frac{\text { H }}{\operatorname{gcd}(\mathrm{s}, \mathrm{t})} \quad$ Note that $\operatorname{gcd}(p, q)=1$.
$\sqrt{2}=\frac{p}{q}$

That's is a contradiction! We conclude $\sqrt{2}$ is irrational.

Proof By Contradiction

Claim: $\sqrt{2}$ is irrational (ie. not rational).
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $\mathrm{t} \neq 0$ and $\sqrt{2}=s / t$
$\psi^{\text {et }} p=\frac{\mathrm{s}}{\operatorname{gcd}(\mathrm{s}, \mathrm{t}))^{\mathrm{q}}=\frac{\frac{1}{2}}{\operatorname{gcd}(\mathrm{~s}, \mathrm{t})}}$ Note that $\operatorname{gcd}(p, q=1$.
$\sqrt{2}=\frac{p}{q}$
$2=\frac{p^{2}}{q^{2}}$
$\frac{1^{2}}{2 q^{2}}=p^{2}$ so p^{2} is even. piss en (by fact) $\quad \underset{p^{2}=4 k^{2}}{ } k \in \mathbb{Z}$
$2 q^{2}=4 k^{2}$

Proof By Contradiction

Claim: $\sqrt{2}$ is irrational (i.e. not rational).
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $\mathrm{t} \neq 0$ and $\sqrt{2}=s / t$
et $p=\frac{\mathrm{s}}{\operatorname{gcd}(\mathrm{s}, \mathrm{t})}, \mathrm{q}=\frac{\mathrm{s}}{\operatorname{gcd}(\mathrm{s}, \mathrm{t})}$ Note that $\operatorname{gcd}(p, q)=1$.
$\sqrt{2}=\frac{p}{q}$
$2=\frac{p^{2}}{q^{2}}$
$2 q^{2}$
$4 k^{2}$$p^{2}$ so p^{2} is even. By the fact above, p is even, i.e. $p=2 k$ for some integer k. Squaring both sides $p^{2}=$ Substituting into our original equation, we have: $2 q^{2}=4 k^{2}$, i.e. $q^{2}=2 k^{2}$. So q^{2} is even. Applying the fact above again, q is even.
But if both p and q are even, $\operatorname{gcd}(p, q) \geq 2$. But we said $\operatorname{gcd}(p, q)=1$
That's is a contradiction! We conclude $\sqrt{2}$ is irrational.

Proof By Contradiction

How in the world did we know how to do that?

In real life...lots of attempts that didn't work.
Be very careful with proof by contradiction - without a clear target, you can easily end up in a loop of trying random things and getting nowhere.

What's the difference?

What's the difference between proof by contrapositive and proof by contradiction?

Sho $p \rightarrow q$	Proof by contradiction	Proof by contrapositive
Starting Point	$\neg(p \rightarrow q) \equiv(p \wedge \neg q)$	$\neg q$
Target	Something false	$\neg p$

Sho	Proof by contradiction	Proof by contrapositive
Starting Point	$\neg p$	---
Target	Something false	---

Another Proof By Contradiction

Claim: There are infinitely many primes.
Proof:

Another Proof By Contradiction

Claim: There are infinitely many primes.
Proof:
Suppose for the sake of contradiction, that there are only finitely many primes. Call them $\underbrace{p_{1}, p_{2}, \ldots, p_{k}}$.
[But [] is a contradiction!] So there must be infinitely many primes.

Another Proof By Contradiction

Claim: There are infinitely many primes.
Proof:
Suppose for the sake of contradiction, that there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the num
Case 1: q is prime

$$
q=p_{i} \text { forssei } q>p_{i} \forall_{i}
$$

Case 2: q is composite

But [] is a contradiction! So there must be infinitely many primes.

Another Proof By Contradiction

Claim: There are infinitely many primes.
Proof:

Suppose for the sake of, contradiction, that there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $q=p_{1} \cdot p_{2} \cdots p_{k}+1$
Case 1: q is prime
$q>p_{i}$ for all i. But every prmewas supposed to be on the list p_{1}, \ldots, p_{k}. A contradiction!
Case 2: q is composite

$$
y_{j}=\mathscr{Z}
$$

Some prime on the list (say p_{j}) divides q. So $q \% p_{i}=0$. and $\left(p_{1} p_{2} \cdots p_{k}+1\right) \% p_{i}=$

1. But $q=\left(p_{1} p_{2} \cdots p_{k}+1\right)$. That's a contradiction!

In either case we have a contradiction! So there must be infinitely many primes.
typo fre: exp. alg. colcubits 4", not 413
Worm-up If $n>0$ and is prime then h is abll
Showes)
by contradiation. (What's the negution of $\operatorname{tr}\left(\left[r(n) \cap p\left(y^{n-1}\right] \rightarrow o(n)\right)\right.$
(What's the negetion of thi
Fast Exponentiation Algorithm
(Suppose: for the sale of corblidelicton, there 13 Soge k
st. $\underbrace{k>0 \text { ad } 4^{k}-1 \text { is prine } \text { and } k \text { iseven. }}$
$j^{*} \psi \quad 4^{2 j}-1=\left(4^{j}+1\right)\left(4^{j}-1\right)$
1 Torget cotrudition.

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers p,q and an exponent e (often about 60,000).
Amazon calculates $\mathrm{n}=p q$. They tell your computer $(n, e)($ not $p, q)$
You want to send Amazon your credit card number a.
You comput $C=a^{e} \% n$ and send Amazon C.
Amazon computes d, the multiplicative inverse of $e(\bmod [p-1][q-1])$ Amazon firds $C^{d} \% n$

Fact: $\underline{a}=C^{d} \% n$ as long as $0<a<n$ and $p \nmid a$ and $q \nmid a$

How big are those numbers?

1230186684530117755130494958384962720772853569595334792197322 4521517264005072636575187452021997864693899564749427740638459 2519255732630345373154826850791702612214291346167042921431160 2221240479274737794080665351419597459856902143413
D 700 bit
F
3347807169895689878604416984821269081770479498371376856891243 22 388982883793878002287614711652531743087737814467999489

\times

3674604366679959042824463379962795263227915816434308764267603 2283815739666511279233373417143396810270092798736308917

How do we accomplish those steps?

That fact? You can prove it in the extra credit problem on HW5. It's a nice combination of lots of things we've done with modular arithmetic.

Let's talk about finding $C=a^{e} \% n$.
e is a BIG number (about 2^{16} is a common choice)
int total = 1;
for(int i $=0$; $i<e ; i++)\{$
total $=\left(\right.$ a total $^{\left(\alpha^{*}\right)} \div$

Let's build a faster algorithm.
Fast exponentiation - simple case. What if e is exactly 2^{16} ?

Fast exponentiation algorithm

What if e isn't exactly a power of 2?

Step 1: Write e in binary.
Step 2: Find $a^{c} \% n$ for c every power of 2 up to e.
Step 3: calculate a^{e} by multiplying a^{c} for all c where binary expansion of e had a 1 .

Fast exponentiation algorithm

Find $4 \underline{11} \% 10 \quad 3-2=1$

Step 1: Write \boldsymbol{e} in binary.

Step 2: Find $a^{c} \% n$ for c every power of 2 up to e.
Step 3: calculate a^{e} by multiplying a^{c} for all c where binary expansion of e had a 1 .
Start with largest power of 2 less than e (8). 8's place gets a 1 . Subtract power Go to next lower power of 2 , if remainder of e is larger, place gets a 1 , subtract power; else place gets a 0 (leave remainder alone).

$$
11=1011_{2}
$$

Fast exponentiation algorithm

Find $4^{11} \% 10$
Step 1: Write e in binary.
Step 2: Find $\boldsymbol{a}^{\boldsymbol{c}} \% \boldsymbol{n}$ for \boldsymbol{c} every power of 2 up to \boldsymbol{e}.
Step 3: calculate a^{e} by multiplying a^{c} for all c where binary expansion of e had a 1 .

$$
\left\{\begin{array}{l}
4^{1} \% 10=4 \\
\underbrace{4^{2} \% 10}=6 \\
4^{4} \% 10
\end{array}=6^{2} \% 10=6\right.
$$

Fast exponentiation algorithm

Find $4^{11} \% 10$
Step 1: Write e in binary.

$$
\begin{gathered}
a \equiv b(\operatorname{nod} n) \\
a \% \text { on }=b \% \operatorname{mon}(\operatorname{nd})
\end{gathered}
$$

Step 2: Find $a^{c} \% n$ for c every power of 2 up to e.
Step 3: calculate $\boldsymbol{a}^{\boldsymbol{e}}$ by multiplying $\boldsymbol{a}^{\boldsymbol{c}}$ for all \boldsymbol{c} where binary expansion of \boldsymbol{e} had a 1.

$4^{1} \% 10=4$

$$
\begin{aligned}
& 4^{11} \% 10=4^{8+2+1} \% 10= \\
& {\left[\left(4^{8} \% 10\right) \cdot\left(4^{2} \% 10\right) \cdot(4 \% 10)\right] \% 10=(6 \cdot 6 \cdot 4) \% 10}
\end{aligned}
$$

$4^{2} \% 10=6$
$4^{4} \% 10=6^{2} \% 10=6$
$4^{8} \% 10=6^{2} \% 10=6$

$$
=(36 \% 10 \cdot 4) \% 10=(6 \cdot 4) \% 10=24 \% 10=4 .
$$

Fast Exponentiation Algorithm

 Is it...actually fast?The number of multiplications is between $\log _{2} e$ and $2 \log _{2} e$. That's A LOT smaller than e

One More Example for Reference

Find $3^{25} \% 7$ using the fast exponentiation algorithm.

Find 25 in binary:
16 is the largest power of 2 smaller than $25 .(25-16)=9$ remaining 8 is smaller than $9 .(9-8)=1$ remaining.
4 s place gets a 0 .
2s place gets a 0
$1 s$ place gets a 1
11001_{2}

One More Example for Reference

Find $3^{25} \% 7$ using the fast exponentiation algorithm.

Find $3^{2^{i}} \% 7$:
$3^{1} \% 7=3$
$3^{2} \% 7=9 \% 7=2$
$3^{4} \% 7=\left(3^{2} \cdot 3^{2}\right) \% 7=(2 \cdot 2) \% 7=4$
$3^{8} \% 7=\left(3^{4} \cdot 3^{4}\right) \% 7=(4 \cdot 4) \% 7=2$
$3^{16} \% 7=\left(3^{8} \cdot 3^{8}\right) \% 7=(2 \cdot 2) \% 7=4$

One More Example for Reference

Find $3^{25} \% 7$ using the fast exponentiation algorithm.

$$
\begin{array}{ll}
3^{1} \% 7=3 & \begin{array}{l}
3^{25} \% 77=3^{16+8+1} \% 7 \\
3^{2} \% 7=2
\end{array} \\
\begin{array}{ll}
=\left[(3 \cdot 2 / 7) \cdot\left(3^{3} \% 7\right) \cdot\left(3^{1} \% 7\right)\right] \% 7 \\
3^{4} \% 7=4 & =[4 \cdot 3 \cdot 3] \% 7
\end{array} \\
3^{8} \% 7=2 & \\
3^{16} \% 7=4 & \\
&
\end{array}
$$

A Brief Concluding Remark
Why does RSA work? i.e. why is my credit card number "secret"?

Raising numbers to large exponents (in mod arithmetic) and finding multiplicative inverses in modular arithmetic are things computers can do quickly.
But factoring numbers (to find p, q to get d), or finding an "exponential inverse" (not a real term) directly are not things computers can do quickly. At least as far as we know.

$$
\begin{aligned}
& \text { Ely. At least as far as we know. } \\
& a^{\frac{\beta}{1}(\bmod \cdot n)} \quad \begin{array}{l}
\text { Fid } e^{\prime} \text { multi in of e (nob) } \\
\left(a^{e}\right)^{e^{\prime}}=a^{\prime}
\end{array}
\end{aligned}
$$

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers p, q and an exponent e (often about 60,000).
Amazon calculates $\mathrm{n}=p q$. They tell your computer $(n, e)(\operatorname{not} p, q)$
You want to send Amazon your credit card number a.
You compute $C=a^{e} \% n$ and send Amazon C.
Amazon compute dethe multiplicative inverse of $e(\bmod [p-1][q-1])$
Amazon finds $C^{d} \% n$

Fact: $a=C^{d} \% n$ as long as $0<a<n$ and $p \nmid a$ and $q \nmid a$

And now, for even more proofs!

If a^{2} is even then a is even

Proof:
We argue by contrapositive.
Suppose a is odd.
a^{2} is odd.

If a^{2} is even then a is even

Proof:

We argue by contrapositive.
Suppose a is odd.
By definition of odd, $a=2 k+1$ for some integer k.
$a^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1$.
Factoring, $a^{2}=2\left(2 k^{2}+2 k\right)+1$.
So a^{2} is odd by definition.

GCD fact

If a and b are positive integers, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$

How do you show two gcds are equal?
Call $a=\operatorname{gcd}(w, x), b=\operatorname{gcd}(y, z)$

If $b \mid w$ and $b \mid x$ then b is a common divisor of w, x so $b \leq a$ If $a \mid y$ and $a \mid z$ then a is a common divisor of y, z, so $a \leq b$ If $a \leq b$ and $b \leq a$ then $a=b$

$\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$

Let $\mathrm{x}=\operatorname{gcd}(a, b)$ and $y=\operatorname{gcd}(b, a \% b)$.
We show that y is a common divisor of a and b.
By definition of $\operatorname{gcd}, y \mid b$ and $y \mid(a \% b)$. So it is enough to show that $y \mid a$. Applying the definition of divides we get $b=y k$ for an integer k, and $(a \% b)=y j$ for an integer j.
By definition of mod, $a \% b$ is $a=q b+(a \% b)$ for an integer q.
Plugging in both of our other equations:
$a=q y k+y j=y(q k+j)$. Since q, k, and j are integers, $y \mid a$. Thus y is a common divisor of a, b and thus $y \leq x$.

$\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$

Let $\mathrm{x}=\operatorname{gcd}(a, b)$ and $y=\operatorname{gcd}(b, a \% b)$.
We show that x is a common divisor of b and $\mathrm{a} \% b$.
By definition of gcd, $\mathrm{x} \mid b$ and $x \mid a$. So it is enough to show that $\mathrm{x} \mid(a \% b)$.
Applying the definition of divides we get $b=x k^{\prime}$ for an integer k^{\prime}, and $\mathrm{a}=x j^{\prime}$ for an integer j^{\prime}.
By definition of mod, $a \% b$ is $a=q b+(a \% b)$ for an integer q
Plugging in both of our other equations:
$x j^{\prime}=q x k^{\prime}+a \% b$. Solving for $a \% b$, we have $a \% b=x j^{\prime}-q x k^{\prime}=$ $x\left(j^{\prime}-q k^{\prime}\right)$. So $x \mid(a \% b)$. Thus x is a common divisor of $b, a \% b$ and thus $x \leq y$.

$\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$

Let $\mathrm{x}=\operatorname{gcd}(a, b)$ and $y=\operatorname{gcd}(b, a \% b)$.
We show that x is a common divisor of b and $\mathrm{a} \% b$.

We have shown $x \leq y$ and $y \leq x$.
Thus $x=y$, and $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$.

