
Number Theory Proofs CSE 311 Autumn 20

Lecture 14

Warm up: Show that if 𝑎2 if even then 𝑎 is even.

Announcements

HW5 is coming out this evening.

It’s due Monday November 9th

It’s also a little longer than usual, so don’t think this is an excuse to put it off.

“Part I” of the homework is on number theory – these slides have everything you
need.

“Part II” is on induction, the topic for next week.

We want to give you feedback on induction proofs before the midterm, hence the
different setup.

Announcements

Everyone gets an extra late day!

Why?
HW3 grades aren’t back out yet, we want to make sure you don’t repeat mistakes if
you learn from them. They’ll be out this afternoon.

And HWs 3 and 4 seem to be taking some folks longer than anticipated.

Use this as a learning opportunity; 311 homeworks are not like calculus homeworks
where it’s easy to predict exactly how long it will take. Get started early.

Announcements

Daylight Saving Time ends this Sunday.

If you’re in a part of the U.S. that observes Daylight Saving Time, enjoy
your extra hour of sleep.

If you’re not…the time of everything relative to you probably shifts by an
hour Sunday (Seattle time). :/

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

gcd(35,27)

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

gcd(35,27) = gcd(27, 35%27) = gcd(27,8)

= gcd(8, 27%8) = gcd(8, 3)

= gcd(3, 8%3) = gcd(3, 2)

= gcd(2, 3%2) = gcd(2,1)

= gcd(1, 2%1) = gcd(1,0)

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2
= 3 − 1 ⋅ 8 − 2 ⋅ 3
= −1 ⋅ 8 + 2 ⋅ 3

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2
= 3 − 1 ⋅ 8 − 2 ⋅ 3
= −1 ⋅ 8 + 3 ⋅ 3
= −1 ⋅ 8 + 3 27 − 3 ⋅ 8
= 3 ⋅ 27 − 10 ⋅ 8
= 3 ⋅ 27 − 10(35 − 1 ⋅ 27)
= 13 ⋅ 27 − 10 ⋅ 35

gcd(27,35) = 13 ⋅ 27 + −10 ⋅ 35

When substituting

back, you keep

the larger of 𝑚, 𝑛
and the number

you just

substituted.

Don’t simplify

further! (or you

lose the form you

need)

So…what’s it good for?

Suppose I want to solve 7𝑥 ≡ 1 𝑚𝑜𝑑 𝑛

Just multiply both sides by
1

7
…

Oh wait. We want a number to multiply by 7 to get 1.

If the gcd(7,n) = 1

Then 𝑠 ⋅ 7 + 𝑡𝑛 = 1, so 7𝑠 − 1 = −𝑡𝑛 i.e. 𝑛|(7𝑠 − 1) so 7𝑠 ≡ 1 𝑚𝑜𝑑 𝑛 .

So the 𝑠 from Bézout’s Theorem is what we should multiply by!

Try it

Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find?

The multiplicative inverse of 7(mod 26)

Finding the inverse…

gcd(26,7) = gcd(7, 26%7) = gcd(7,5)

= gcd(5, 7%5) = gcd(5,2)

= gcd(2, 5%2) = gcd(2, 1)

= gcd(1, 2%1) = gcd(1,0)= 1.

26 = 3 ⋅ 7 + 5 ; 5 = 26 − 3 ⋅ 7

7 = 5 ⋅ 1 + 2 ; 2 = 7 − 5 ⋅ 1

5 = 2 ⋅ 2 + 1 ; 1 = 5 − 2 ⋅ 2

1 = 5 − 2 ⋅ 2
= 5 − 2(7 − 5 ⋅ 1)
= 3 ⋅ 5 − 2 ⋅ 7

= 3 ⋅ 26 − 3 ⋅ 7 − 2 ⋅ 7
3 ⋅ 26 − 11 ⋅ 7

−11 is a multiplicative inverse.

We’ll write it as 15, since we’re working mod 26.

Try it

Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find?

The multiplicative inverse of 7 (𝑚𝑜𝑑 26).

15 ⋅ 7 ⋅ 𝑦 ≡ 15 ⋅ 3(𝑚𝑜𝑑 26)

𝑦 ≡ 45(𝑚𝑜𝑑 26)

Or 𝑦 ≡ 19(𝑚𝑜𝑑 26)

So 26|19 − 𝑦, i.e. 26𝑘 = 19 − 𝑦 (for 𝑘 ∈ ℤ) i.e. 𝑦 = 19 − 26 ⋅ 𝑘 for any 𝑘 ∈ ℤ

So {… ,−7,19,45,…19 + 26𝑘,… }

Multiplicative Inverse

The number 𝑏 is a multiplicative inverse of 𝑎 (mod 𝑛) if 𝑏𝑎 ≡ 1(𝑚𝑜𝑑 𝑛).

If gcd(𝑎, 𝑛) = 1 then the multiplicative inverse exists.

If gcd(𝑎, 𝑛) ≠ 1 then the inverse does not exist.

Arithmetic (𝑚𝑜𝑑 𝑝) for 𝑝 prime is really nice for that reason.

Sometimes equivalences still have solutions when you don’t have
inverses (but sometimes they don’t) – you’ll experiment with these facts
on HW5.

Proof By Contradiction

Proof By Contradiction

Suppose the negation of your claim.

Show that you can derive False (i.e. (¬claim) → F)

If your proof is right, the implication is true.

So ¬claim must be False.

So claim must be True!

Proof By Contradiction

Claim: 2 is irrational (i.e. not rational).

Proof:

Proof By Contradiction

Claim: 2 is irrational (i.e. not rational).

Proof:

Suppose for the sake of contradiction that 2 is rational.

But [] is a contradiction!

Proof By Contradiction

Claim: 2 is irrational (i.e. not rational).

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, 𝑡 such that t ≠ 0 and 2 = 𝑠/𝑡

Let 𝑝 =
s

gcd s,t
, q =

𝑡

gcd s,t
Note that gcd 𝑝, 𝑞 = 1.

2 =
𝑝

𝑞

That’s is a contradiction! We conclude 2 is irrational.

If 𝑎2 is even then 𝑎 is even.

Proof By Contradiction

Claim: 2 is irrational (i.e. not rational).

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, 𝑡 such that t ≠ 0 and 2 = 𝑠/𝑡

Let 𝑝 =
s

gcd s,t
, q =

t

gcd s,t
Note that gcd 𝑝, 𝑞 = 1.

2 =
𝑝

𝑞

2 =
𝑝2

𝑞2

2𝑞2 = 𝑝2 so 𝑝2 is even.

That’s is a contradiction! We conclude 2 is irrational.

If 𝑎2 is even then 𝑎 is even.

Proof By Contradiction

Claim: 2 is irrational (i.e. not rational).

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, 𝑡 such that t ≠ 0 and 2 = 𝑠/𝑡

Let 𝑝 =
s

gcd s,t
, q =

t

gcd s,t
Note that gcd 𝑝, 𝑞 = 1.

2 =
𝑝

𝑞

2 =
𝑝2

𝑞2

2𝑞2 = 𝑝2 so 𝑝2 is even. By the fact above, 𝑝 is even, i.e. 𝑝 = 2𝑘 for some integer 𝑘. Squaring both sides 𝑝2 =
4𝑘2

Substituting into our original equation, we have: 2𝑞2 = 4𝑘2, i.e. 𝑞2 = 2𝑘2.

So 𝑞2 is even. Applying the fact above again, 𝑞 is even.

But if both 𝑝 and 𝑞 are even, gcd 𝑝, 𝑞 ≥ 2 . But we said gcd 𝑝, 𝑞 = 1

That’s is a contradiction! We conclude 2 is irrational.

If 𝑎2 is even then 𝑎 is even.

Proof By Contradiction

How in the world did we know how to do that?

In real life…lots of attempts that didn’t work.

Be very careful with proof by contradiction – without a clear target, you
can easily end up in a loop of trying random things and getting
nowhere.

What’s the difference?

What’s the difference between proof by contrapositive and proof by
contradiction?

Show 𝒑 → 𝒒 Proof by contradiction Proof by contrapositive

Starting Point ¬ 𝑝 → 𝑞 ≡ (𝑝 ∧ ¬𝑞) ¬𝑞

Target Something false ¬𝑝

Show 𝒑 Proof by contradiction Proof by contrapositive

Starting Point ¬𝑝 ---

Target Something false ---

Another Proof By Contradiction

Claim: There are infinitely many primes.

Proof:

Another Proof By Contradiction

Claim: There are infinitely many primes.

Proof:

Suppose for the sake of contradiction, that there are only finitely many
primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘.

But [] is a contradiction! So there must be infinitely many primes.

Another Proof By Contradiction

Claim: There are infinitely many primes.

Proof:

Suppose for the sake of contradiction, that there are only finitely many
primes. Call them 𝑝1, 𝑝2, … , 𝑝𝑘.

Consider the number 𝑞 = 𝑝1 ⋅ 𝑝2 ⋅ ⋯ ⋅ 𝑝𝑘 + 1

Case 1: 𝑞 is prime

Case 2: 𝑞 is composite

But [] is a contradiction! So there must be infinitely many primes.

Another Proof By Contradiction

Claim: There are infinitely many primes.

Proof:

Suppose for the sake of contradiction, that there are only finitely many primes. Call
them 𝑝1, 𝑝2, … , 𝑝𝑘.

Consider the number 𝑞 = 𝑝1 ⋅ 𝑝2 ⋅ ⋯ ⋅ 𝑝𝑘 + 1

Case 1: 𝑞 is prime

𝑞 > 𝑝𝑖 for all 𝑖. But every prime was supposed to be on the list 𝑝1, … , 𝑝𝑘. A
contradiction!

Case 2: 𝑞 is composite

Some prime on the list (say 𝑝𝑖) divides 𝑞. So 𝑞%𝑝𝑖 = 0. and 𝑝1𝑝2⋯𝑝𝑘 + 1 %𝑝𝑖 =
1. But 𝑞 = 𝑝1𝑝2⋯𝑝𝑘 + 1 . That’s a contradiction!

In either case we have a contradiction! So there must be infinitely many primes.

Fast Exponentiation Algorithm

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers 𝑝, 𝑞 and
an exponent 𝑒 (often about 60,000).

Amazon calculates n = 𝑝𝑞. They tell your computer (𝑛, 𝑒) (not 𝑝, 𝑞)

You want to send Amazon your credit card number 𝑎.

You compute 𝐶 = 𝑎𝑒%𝑛 and send Amazon 𝐶.

Amazon computes 𝑑, the multiplicative inverse of 𝑒 (𝑚𝑜𝑑 [𝑝 − 1][𝑞 − 1])

Amazon finds 𝐶𝑑%𝑛

Fact: 𝑎 = 𝐶𝑑%𝑛 as long as 0 < 𝑎 < 𝑛 and 𝑝 ∤ 𝑎 and 𝑞 ∤ 𝑎

How big are those numbers?

1230186684530117755130494958384962720772853569595334792197322

4521517264005072636575187452021997864693899564749427740638459

2519255732630345373154826850791702612214291346167042921431160

2221240479274737794080665351419597459856902143413

3347807169895689878604416984821269081770479498371376856891243

1388982883793878002287614711652531743087737814467999489

3674604366679959042824463379962795263227915816434308764267603

2283815739666511279233373417143396810270092798736308917

How do we accomplish those steps?

That fact? You can prove it in the extra credit problem on HW5. It’s a
nice combination of lots of things we’ve done with modular arithmetic.

Let’s talk about finding 𝐶 = 𝑎𝑒%𝑛.

𝑒 is a BIG number (about 216 is a common choice)

int total = 1;

for(int i = 0; i < e; i++){

total = (a * total) % n;

}

Let’s build a faster algorithm.

Fast exponentiation – simple case. What if 𝑒 is exactly 216?

int total = 1;

for(int i = 0; i < e; i++){

total = a * total % n;

}

Instead:

int total = a;

for(int i = 0; i < log(e); i++){

total = total^2 % n;

}

Fast exponentiation algorithm

What if 𝑒 isn’t exactly a power of 2?

Step 1: Write 𝑒 in binary.

Step 2: Find 𝑎𝑐%𝑛 for 𝑐 every power of 2 up to 𝑒.

Step 3: calculate 𝑎𝑒 by multiplying 𝑎𝑐 for all 𝑐 where binary expansion of
𝑒 had a 1.

Fast exponentiation algorithm

Find 411%10

Step 1: Write 𝒆 in binary.

Step 2: Find 𝑎𝑐%𝑛 for 𝑐 every power of 2 up to 𝑒.

Step 3: calculate 𝑎𝑒 by multiplying 𝑎𝑐 for all 𝑐 where binary expansion of
𝑒 had a 1.

Start with largest power of 2 less than 𝑒 (8). 8’s place gets a 1. Subtract power

Go to next lower power of 2, if remainder of 𝑒 is larger, place gets a 1, subtract
power; else place gets a 0 (leave remainder alone).

11 = 10112

Fast exponentiation algorithm

Find 411%10

Step 1: Write 𝑒 in binary.

Step 2: Find 𝒂𝒄%𝒏 for 𝒄 every power of 𝟐 up to 𝒆.

Step 3: calculate 𝑎𝑒 by multiplying 𝑎𝑐 for all 𝑐 where binary expansion of 𝑒
had a 1.

41%10 = 4

42%10 = 6

44%10 = 62%10 = 6

48%10 = 62%10 = 6

Fast exponentiation algorithm

Find 411%10

Step 1: Write 𝑒 in binary.

Step 2: Find 𝑎𝑐%𝑛 for 𝑐 every power of 2 up to 𝑒.

Step 3: calculate 𝒂𝒆 by multiplying 𝒂𝒄 for all 𝒄 where binary expansion of 𝒆
had a 𝟏.

41%10 = 4

42%10 = 6

44%10 = 62%10 = 6

48%10 = 62%10 = 6

411%10 = 48+2+1%10 =

[(48%10) ⋅ 42%10 ⋅ 4%10]%10 = (6 ⋅ 6 ⋅ 4)%10

= 36%10 ⋅ 4 %10 = 6 ⋅ 4 %10 = 24%10 = 4.

Fast Exponentiation Algorithm

Is it…actually fast?

The number of multiplications is between log2 𝑒 and 2 log2 𝑒.

That’s A LOT smaller than 𝑒

One More Example for Reference

Find 325%7 using the fast exponentiation algorithm.

Find 25 in binary:

16 is the largest power of 2 smaller than 25. 25 − 16 = 9 remaining

8 is smaller than 9. 9 − 8 = 1 remaining.

4s place gets a 0.

2s place gets a 0

1𝑠 place gets a 1

110012

One More Example for Reference

Find 325%7 using the fast exponentiation algorithm.

Find 32
𝑖
%7:

31%7 = 3

32%7 = 9%7 = 2

34%7 = (32 ⋅ 32)%7 = (2 ⋅ 2)%7 = 4

38%7 = 34 ⋅ 34 %7 = 4 ⋅ 4 %7 = 2

316%7 = 38 ⋅ 38 %7 = 2 ⋅ 2 %7 = 4

One More Example for Reference

Find 325%7 using the fast exponentiation algorithm.

31%7 = 3

32%7 = 2

34%7 = 4

38%7 = 2

316%7 = 4

325%7 = 316+8+1%7

= [(316%7) ⋅ 38%7 ⋅ (31%7)]%7

= 4 ⋅ 2 ⋅ 3 %7
= 1 ⋅ 3 %7 = 3

A Brief Concluding Remark

Why does RSA work? i.e. why is my credit card number “secret”?

Raising numbers to large exponents (in mod arithmetic) and finding
multiplicative inverses in modular arithmetic are things computers can
do quickly.

But factoring numbers (to find 𝑝, 𝑞 to get 𝑑) or finding an “exponential
inverse” (not a real term) directly are not things computers can do
quickly. At least as far as we know.

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers 𝑝, 𝑞 and
an exponent 𝑒 (often about 60,000).

Amazon calculates n = 𝑝𝑞. They tell your computer (𝑛, 𝑒) (not 𝑝, 𝑞)

You want to send Amazon your credit card number 𝑎.

You compute 𝐶 = 𝑎𝑒%𝑛 and send Amazon 𝐶.

Amazon computes 𝑑, the multiplicative inverse of 𝑒 (𝑚𝑜𝑑 [𝑝 − 1][𝑞 − 1])

Amazon finds 𝐶𝑑%𝑛

Fact: 𝑎 = 𝐶𝑑%𝑛 as long as 0 < 𝑎 < 𝑛 and 𝑝 ∤ 𝑎 and 𝑞 ∤ 𝑎

And now, for even more proofs!

If 𝑎2 is even then 𝑎 is even

Proof:

We argue by contrapositive.

Suppose 𝑎 is odd.

𝑎2 is odd.

If 𝑎2 is even then 𝑎 is even

Proof:

We argue by contrapositive.

Suppose 𝑎 is odd.

By definition of odd, 𝑎 = 2𝑘 + 1 for some integer 𝑘.

𝑎2 = 2𝑘 + 1 2 = 4𝑘2 + 4𝑘 + 1.

Factoring, 𝑎2 = 2 2𝑘2 + 2𝑘 + 1.

So 𝑎2 is odd by definition.

GCD fact

If 𝑎 and 𝑏 are positive integers, then gcd(a,b) = gcd(b, a % b)

How do you show two gcds are equal?

Call 𝑎 = gcd 𝑤, 𝑥 , 𝑏 = gcd(𝑦, 𝑧)

If 𝑏|𝑤 and 𝑏|𝑥 then 𝑏 is a common divisor of 𝑤, 𝑥 so 𝑏 ≤ 𝑎

If 𝑎|𝑦 and 𝑎|𝑧 then 𝑎 is a common divisor of 𝑦, 𝑧, so 𝑎 ≤ 𝑏

If 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 then 𝑎 = 𝑏

gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑦 is a common divisor of 𝑎 and 𝑏.

By definition of gcd, 𝑦|𝑏 and 𝑦|(𝑎%𝑏). So it is enough to show that 𝑦|𝑎.

Applying the definition of divides we get 𝑏 = 𝑦𝑘 for an integer 𝑘, and
𝑎%𝑏 = 𝑦𝑗 for an integer 𝑗.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞.

Plugging in both of our other equations:

𝑎 = 𝑞𝑦𝑘 + 𝑦𝑗 = 𝑦 𝑞𝑘 + 𝑗 . Since 𝑞, 𝑘, and 𝑗 are integers, 𝑦|𝑎. Thus 𝑦 is a
common divisor of 𝑎, 𝑏 and thus 𝑦 ≤ 𝑥.

gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

By definition of gcd, x|𝑏 and 𝑥|𝑎. So it is enough to show that x|(𝑎%𝑏).

Applying the definition of divides we get 𝑏 = 𝑥𝑘′ for an integer 𝑘′, and
a = 𝑥𝑗′ for an integer 𝑗′.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞

Plugging in both of our other equations:

𝑥𝑗′ = 𝑞𝑥𝑘′ + 𝑎%𝑏. Solving for 𝑎%𝑏, we have 𝑎%𝑏 = 𝑥𝑗′ − 𝑞𝑥𝑘′ =
𝑥 𝑗′ − 𝑞𝑘′ . So 𝑥|(𝑎%𝑏). Thus 𝑥 is a common divisor of 𝑏, 𝑎%𝑏 and thus
𝑥 ≤ 𝑦.

gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

We have shown 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥.

Thus 𝑥 = 𝑦, and gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎%𝑏 .

