Warm up:.Show that if a® #®even then a is even.
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Announcements

HWS5 is coming out this evening.

It's due Monday November 9t
It's also a little longer than usual, so don't think this is an excuse to put it off.

“"Part I” of the homework is on number theory — these slides have everything you
need.

—=Part II" is on induction, the topic for next week.

We want to give you feedback on induction proofs before the midterm, hence the
different setup.



Announcements

Everyone gets an extra late day!

Why?
HW3 grades areptbackee=yet we want to make sure you don't repeat mistakes if
you learn from them. They'll be out this afternoon.

And HWs 3 and 4 seem to be taking some folks longer than anticipated.

Use this as a learning opportunity; 311 homeworks are not like calculus homeworks
where it's easy to predict exactly how long it will take. Get started early.



Announcements

Daylight Saving Time ends this Sunday.

If you're in a part of the U.S. that observes Daylight Saving Time, enjoy
your extra hour of sleep.

If you're not...the time of everything relative to you probably shifts by an
hour Sunday (Seattle time). :/



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

gcd(35,27)
—~————



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.

Step 3 substitute backward
= " 6570\3 o~ FWN @

gcd(35,27) = gcd(2/, 35%217) = gcd(27,8) 135=1-27 +8
= gcd(8, 27/%8) = gcd(8, 3) 27=3:- 8 +3
=gcd(3,8%3)  =9gcd(3, 2) Qs =2- 3 +2
= gcd(2, 3%2) = gcd(2,1) 3 =1- 2 +1
= gcd(1, 2%1) = gcd(10) L — -



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

v’ L D "
35=1-27 +8
27=3:- 8 +3
8 =2- 3 +2
3 =1 2 +1




Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

35=1-27 +8 8=35—-1-27
27=3- 8 +3 3=27—3- 8
8 =2- 3 +2 2 =8 — 2- 3
3 =1- 2 +1 _L=3—1-2




Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

9ed6g29) = = 5-1 2

5 — IT\27

27 — 3 -
2 = 2
1 =3 - 1-
PN .




Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

1=3-1-2
8=35—1-27 =3-1-8-2:3)
3=27 —3- 8 Sohetes




Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

3=27—-3- 8
2 =8 — 2- 3
1 =3 -1 2

gcd(27,35) = 13- 27 + (—10) - 35

1=3-1-2
=3-1-(8-2-3)
~1-8+3-3
~1-8+3(27—3-8)
=3.27-10-8
=3.27-10(35—1-27)

S,

When substituting
back, you keep
the larger of m, n
and the number
you just
substituted.

Don’t simplify
further! (or you
lose the form you
need)



So..what's it good for?

Suppose | want to solv@%}?(moﬁ) zz — £ (‘\lz:ihjj

Just multiply both sides b@ K= S Qﬂ&lvﬁ

Oh wait. We want a number to multiply by 7 to get 1.

It the gcd(7,n) =1 .
@&2}7#_@7’1 =1 s07s—-1= —{n .e.n|(7s — 1) so 7s,= 1(mod n).

e~
So the s from Bézout's Theorem is what we should multiply by!




Try 1t

Solve the equatio? 7y = 3(mod 26))

- L&va }\>
What do we need to find?
The multiplicative inverse of 7(mod 26)




Finding the inverse...

ged(261) = ged(7, 26%7) = ged(7,5)

= gcd
= gcd

= gcd

26=3-7+5;
7=5-1+2;
5=2-2+4+1,;

(5, 7%5) = gcd(5,2)
(2, 5%2) =qgcd(2, )
1, 2%1) = gcd(1,0)=1.
(1. 2% = ged(10)=],

5=26 —3-7
2=7— 5-1
1=5—- 2-2

1=5—-2-2
=5-2(7-5-1)
=3.5-2-7

—11 is a multiplicgtive inverse.
g"

We'll write it ‘@
N

nce we're working mod 26.



Try 1t

263 v?j( )
Solve the equatidp 7y = 3(mod 26)

What do we need to find? 9 25 -—{ f . '9— — (
The multiplicative inverse of 7 (mod 26).
A flré | + |7

-y =15 - 3(mod 26) ”lé“~(—(\,j,)

\s y = 4‘5(m0d 26) _ -
Orlz 19(mod 26) alé /?LJQ(M %)

S026|19—vy,ie. 26k=19—y (forke€Z)ie.y=19—-26-kforanyk € Z
So {...,—7,19,45, ...19 + 26k, ...}




Multiplicative Inverse

The number b is a multiplicative inverse of a (mod n) if ba = 1(mod n).

It gcdga!ng = 1 then the multiplicative inverse exists.
It gcd(a, n) # 1 then the inverse does not exist.

Arithmetic (mod p) for p primgjs really nice for that reason.

e —

Sometimes equivalences still have solutions when you don't have
inverses (but sometimes they don't) — you'll experiment with these facts
on HWS5.



I~ Proof By Contradiction



Proof By Contradiction
A

—> Suppose the negation of your claim. suppzs+
Show that you can derive False( (i.e. (=claim) e%)
e q
—3¥ your proof is right, the implication is true.™! At =F

So —claim must be False. ) -;F
So claim must be True!




Proof By Contradiction

Claim: V2 is irrational (i.e. not rational),

Proof:



Proof By Contradiction

Claim:,]\/f IS irrationall (i.e. not rational).

Proof:

Suppose for the sake of contradiction that V2 is rational.
~ —




Proof By Contradiction

If a? is even then a is even.

Claim: v/2 is irrational (i.e. not rational).

Proof:
Suppose for the sake of contradiction that v/2 is rational.

By definition of rational, there are integers s, t such that t # 0 and V2 = s/t

S t ———
Letp = D q= —edG.D Note that gcd(p, q) = 1.
E—— e
V2 =2
.\q,

That's is a contradiction! We conclude V2 is irrational.



Proof By Contradiction

If a? is even then a is even.

Claim: v/2 is irrational (i.e. not rational).

Proof:
Suppose for the sake of contradiction that v/2 is rational.

By definition of rational, there are integers s, t such that t # 0 and V2 = s/t

Letp = - St) \(_bNote thw
ﬁ=§ p- L &{3

2= ~
L \:evx”o”u 10 gl o
C?— Pl

ey xS U S >0k = 2|q-

© ! -
s 1S QUM
That's is a contradiction! We conclude v/2 is irrationa %/ zqcvjibi Q\

P ———— o ———




Proof By Contradiction

If a? is even then a is even.

Claim: v/2 is irrational (i.e. not rational).

Proof:

Suppose for the sake of contradiction that v/2 is rational.

By definition of rational, there are integers s, t such that t # 0 and V2 = s/t
Note that gcd(p, q) = 1.

s
ged(s,t)’ 4= gcd(s,b)

Letp =
vz =2

q

2
_ b
2_2

=

2g% = p? s p? is even. By the fact above, p is even, i.e. p = 2k for some integer k. Squaring both sides p? =

Substituting into our original equation, we have: 2q* = 4k?, i.e. g% = 2k>.
So g? is even. Applying the fact above again, q is even.
But if both p and q are even, gcd(p, q) = 2. But we said gcd(p,q) =1

That's is a contradiction! We conclude V2 is irrational.



Proof By Contradiction

How in the world did we know how to do that?

In real life...lots of attempts that didn't work.

Be very careful with proof by contradiction — without a clear target, you
can easily end up in a loop of trying random things and getting
nowhere.



What's the difference?

What's the difference between proof by contrap05|t|ve and proof by
contradiction?

m Proof by contradiction |Proof by contrapositive

Starting Point -(p>q) =(pA-q) —1q
—

Target Something false —p

m Proof by contradiction |Proof by contrapositive

Starting Point —p -

Target Something false ---

N— /




Another Proof By Contradiction

Claim: There are infinitely many primes.

Proof:



Another Proof By Contradiction

Claim: There are infinitely many primes.
Proof:

Suppose for the sake of contradiction, that there are only finitely many
primes. Call them p4,py, .., Pk

But [Lis a contradiction! So there must be infinitely many primes.



Another Proof By Contradiction

Claim: There are infinitely many primes.
Proof:

Suppose for the sake g adiction, that there are only finitely many
pnmes Call theprp

Case 1: g is prime DR ‘
G Py foesmel qg?c Fredt

Case 2: g Is composite /é{\)(
[ las, et ciq, S"”‘Pc{?; %1 TF%?;

But [] is a contrad|ct|on| So there must e many primes.

PofslwP =1




Another Proof By Contradiction

Claim: There are infinitely many primes.
Proof:

Suppose for the sake of contradiction, that there are only finitely many primes. Call
them pq, po, ..., Pk.

Consider the number g =p; *p, - o + 1
Case 1. q is prime

q > p; for all i. But every prime was supposed to be on the list pq, ..., pg. A
contradiction!

Case 2: g Is composite

Some prime on the list (say p;) divides g. So g%p; = 0. and ( o py + 1)%p; =
1. But q a (P1p2 " Pr + 18. 1yh%lt’s a contradiction!” " PPz Pi Pi

In either case we have a contradiction! So there must be infinitely many primes.
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An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers p, q and

an exponent e (often about 60,000).

Amazon calculates n = pq. They tell your computer Ql’f) (not p, q)

You want to send Amazon your credit card number a.

You computnd send Amazon C.

Amazon computeg d, th mult|pI|cat|v§\|nverse f

Amazon finds C%%n

\

e (mod [p ~ 1][q — 1)

Fact g = C*%n aslongas0<a<nandptaandqta

~—"

\_/



How big are those numbers?

1230186684530117755130494958384962720772853569595334792197322
452151726400507263657518745202199786469389956474942777400638459
2519255732630345373154826850791702612214291346167042921431160
22212404792747377940806653514195974598560902143413

e
——

— —_—

<3347807169895689878604416984821269081770479498371376856891243
g3388982883793878002287614711652531743087737814467999489

00 Ar 350 o »
f
(3674604366679959042824463379962795263227915816434308764267603
22838157396006511279233373417143396810270092798736308917



How do we accomplish those steps?

That fact? You can prove it in the extra credit problem on HW5. It's a
nice combination of lots of things we've done with modular arithmetic.

Let’s talk about finding € = a®%n.
-

e is a BIG number (about 21¢ is a common choice)

int total = 1;

for(int 1 = 0; 1 < e; 1++){
total = (a * total) % n;
M\_’



Let's build a faster algorithm.

Fast exponentiation — simple case. What if e is exactly 2167

int total = 1; Cl > %&
for(int 1 = 0; 1 < e; 1++) { VW
\_/

O

total = a * total % n;

= [C
} @_\% > ?/uf\ (O\?) ,’\ 0\ %V)
Instead: <6\ 3% ;;;5‘1 | )
int total = a; &j %%J§K1 OSQ;J

for(int 1 = 0; 1 < log(e);

total = total”™2 % n;
—_———————



Fast exponentiation algorithm

What if e isn't exactly a power of 27?

Step 1. Write e in binary.

Step 2: Find a®%n for ¢ every power of 2 up to e.

Step 3: calculate a® by multiplying a€ for all ¢ where binary expansion of
e had a 1.



Fast exponentiation algorithm

-
e XL 9L T S

Step 2: Find a“%n for ¢ every power of 2 up to e.

Step 1: Write e in binary.

Step 3: calculate a® by multiplying a® for all ¢ where binary expansion of
e had a 1.

Start with largest power of 2 less than e (8). 8's place gets a 1. Subtract power

Go to next lower power of 2, if remainder of e is larger, place gets a 1, subtract
power; else place gets a 0 (leave remainder alone).

11=1011,
\N\—



Fast exponentiation algorithm
. SRR
Find 4119610 Y, M, -
Step 1: Write e in binary.
Step 2: Find a“%n for ¢ every power of 2 up to e.
Step 3: calculate a® by multiplying a® for all ¢ where binary expansion of e

had a
) Nl = 3710 “C"L)

410410 = 4

O

429%10 = 6
—
44%10 = 62%10 = 6

48%10: 62%10 =6

\/ﬁ~v‘




Fast exponentiation algorithm U1

Find 4429610 ?—‘Oz)fjf Oﬁ/biﬁ“)\ - @f‘f\% 0
Step 1: Write e in binary. ocC/;Cj(«W&W\)A = (Lt“% ) Q)lﬂ:
Step 2: Find a%n for ¢ every power of 2 up to e. —-( ‘2“3’:- oD
Step 3: caIcuIate a& by multiplying a¢ for all ¢ where binary expan5|on of e

had a ) &
8 D N Q( l)7 210
41910 @ 4 %10 = 2+10/ o

2
429%10 — (36%10 - 4 %10 = (6 1)%10 = 24%10 =
44%10 = 62%10 =6

51;&1_0—62%10@ " Fol0 ~ 1




Fast Exponentiation Algorithm

s it...actually fast?

The number of multiplications is between log, e and 2 log, e.
\d'
That's A LOT smaller than e

Q\(A

14500



One More Example for Reference

Find 32°%7 using the fast exponentiation algorithm.

Find 25 in binary:
16 is the largest power of 2 smaller than 25. (25 — 16) = 9 remaining
8 is smaller than 9. (9 — 8) = 1 remaining.
4s place gets a 0.
2s place gets a 0
1s place gets a 1
11001,



One More Example for Reference

Find 32°%7 using the fast exponentiation algorithm.

Find 32'9%7 -

31%7 =3

32%7 = 9%7 = 2

3*%7 = (3% - 3*)%7 = (2-2)%7 = 4
38067 = (3* - 3*)%7 = (4 - 1) %7 = 2
316047 = (3% -3%)%7 = (2- 2)%7 = 4



One More Example for Reference

Find 32°%7 using the fast exponentiation algorithm.

31%7 — 3 325%7 — 316+8+1%7
20,7 — = [(3%%7) - (32%7) - (3'%7)]|%7
3°07 =2 =[4-2-3]%7
34047 = 4 = (1-3)%7 =3
38047 = 2

31°%7 = 4



A Brief Concluding Remark

Why does RSA work? i.e. why is my credit card number “secret”?

multiplicative inverses in modular arithmetic are things computers can

aising numbers to large exponents (in mod arithmetic) and finding
o quickly.

But factoring numbers (to find p, g to get d) or finding an “exponential
inverse” (not a real term) directly are not things computers can do
quickly. At least as far as we know.



An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers p, q and
an exponent e (often about 60,000).

Amazon calculat@ pq. They tell your computer (n, e) (not p, q)
You want to send Amazon your credit card number a.
You compute C = a®%n and send Amazon C.

T—

Amazon computes d, the multiplicative inverse of e (mod [p — 1][q — 1])

Amazon findsC\d%/n

Fact: a = C%%mn aslongas0<a<nandptaandqta



[~ And now, for even more proofs!



If a? is even then a is even

Proof:
We argue by contrapositive.
Suppose a is odd.

a® is odd.



If a? is even then a is even

Proof:

We argue by contrapositive.

Suppose a is odd.

By definition of odd, a = 2k + 1 for some integer k.
a’ = 2k + 1)%? = 4k? + 4k + 1.

Factoring, a? = 2(2k? + 2k) + 1.

So a? is odd by definition.



GCD fact

It a and b are positive integers, then gcd(a,b) = gcd(b, a % b)

How do you show two gcds are equal?
Call a = ged(w, x), b = gcd(y, z)

f blw and b|x then b is a common divisor of w,x so b < a
faly and a|z then a is a common divisor of y,z,soa < b
fa<bandb <athena=5»




gcd(a,b) = gcd(b, a % b)

Let x = gcd(a, b) and y = gcd(b, a%b).
We show that y is a common divisor of a and b.
By definition of gcd, y|b and y|(a%b). So it is enough to show that y]a.

Applying the definition of divides we get b = yk for an integer k, and
(a%b) = yj for an integer j.

By definition of mod, a%b is a = gb + (a%b) for an integer q.
Plugging in both of our other equations:

a = qyk + yj = y(qgk + j).Since q,k, and j are integers, y|a. Thus y is a
common divisor of a, b and thus y < x.




gcd(a,b) = gcd(b, a % b)

Let x = gcd(a, b) and y = gcd(b, a%b).
We show that x is a common divisor of b and a%b.
By definition of gcd, x|b and x|a. So it is enough to show that x|(a%b).

Applying the definition of divides we get b = xk' for an integer k', and
a = xj' for an integer j'.

By definition of mod, a%b is a = gb + (a%b) for an integer q
Plugging in both of our other equations:

xj' = qxk’ + a%b. Solving for a%b, we have a%b = xj' — qxk’ =
x(j" — qk"). So x|(a%b). Thus x is a common divisor of b, a%b and thus
X=<Yy.



gcd(a,b) = gcd(b, a % b)

Let x = gcd(a, b) and y = gcd(b, a%b).
We show that x is a common divisor of b and a%b.

We have shown x < yand y < x.
Thus x =y, and gcd(a, b) = gcd(b, a%b) .



