Fibonacci Inequality

Show that $f(n) \leq 2^{n}$ for all $n \geq 0$ by induction.

$$
\begin{gathered}
f(0)=1 ; \quad f(1)=1 \\
f(n)=f(n-1)+f(n-2) \text { for all } n \in \mathbb{N}, n \geq 2 .
\end{gathered}
$$

Fibonacci Inequality

$$
\begin{gathered}
f(0)=1 ; \quad f(1)=1 \\
f(n)=f(n-1)+f(n-2) \text { for all } n \in \mathbb{N}, n \geq 2 .
\end{gathered}
$$

Show that $f(n) \leq 2^{n}$ for all $n \geq 0$ by induction.
Define $P(n)$ to be " $f(n) \leq 2^{n "}$ We show $P(n)$ is true for all $n \geq 0$ by induction on n.
Base Cases: $(n=0): f(0)=1 \leq 1=2^{0}$.
($n=1$): $f(1)=1 \leq 2=2^{1}$.
Inductive Hypothesis: Suppose $P(0) \wedge P(1) \wedge \cdots \wedge P(k)$ for an arbitrary $k \geq 1$.
Inductive step:

Target: $P(k+1)$. i.e. $f(k+1) \leq 2^{k+1}$

