Fibonacci Inequality

Show that $f(n) \leq 2^n$ for all $n \geq 0$ by induction.

$$f(0) = 1;$$
 $f(1) = 1$
 $f(n) = f(n-1) + f(n-2)$ for all $n \in \mathbb{N}, n \ge 2$.

Fibonacci Inequality

 $f(0) = 1; \quad f(1) = 1$ $f(n) = f(n-1) + f(n-2) \text{ for all } n \in \mathbb{N}, n \ge 2.$

Show that $f(n) \leq 2^n$ for all $n \geq 0$ by induction.

Define P(n) to be " $f(n) \le 2^{n}$ " We show P(n) is true for all $n \ge 0$ by induction on n.

Base Cases:
$$(n = 0)$$
: $f(0) = 1 \le 1 = 2^0$.

$$(n = 1): f(1) = 1 \le 2 = 2^1.$$

Inductive Hypothesis: Suppose $P(0) \land P(1) \land \dots \land P(k)$ for an arbitrary $k \ge 1$.

Inductive step:

Target: P(k + 1). i.e. $f(k + 1) \le 2^{k+1}$