Warm up
| have 4 cent stamps and 5 cent stamps (as many as | want of each).
We'll prove that | can make exactly n cents of stamps for all n = 12.

Try for a few values. Can you make 12,13,14? What about 11?7 10?
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Even More Induction

CSE 311 Autumn 20
Lecture 17




Announcements

HW5 due date delayed until Wednesday.

Affects our ability to get feedback to you before midterm ends.

Today is just more induction practice.

Monday is another kind of induction (structural induction)

No problem on the midterm will require structural induction (but if you figure out

how to use it, we'll take it). Slide deck from Wednesday (including stuff repeated
today) is fair game.

More midterm details coming soon.



Induction on Primes

Let P(i) be “i can be written as a product of primes.”
We show P(n) for all n = 2 by induction on n.

Base Case (n = 2): 2 is a product of just itself. Since 2 is prime, it is written as a
product of primes.

Inductive Hypothesis: Supposé P(2), ..., P(k) hS)Id for an arbitrary integer k > 2.

Inductive Step: , , , _
Case 1, k + 1'is prime: then k + 1 is automatically written as a product of primes.

Case 2, k + 1 is composite: We can write k + 1 = st for s, t nontrivial divisors (i.e.
2<s<k+1and2<t<k+1).Byinductive hypothesis, we can write s as a

product of primes p; - ...p; and t as a product of.prlmesdql -+ qp. Multiplying these
representations, k + 1 = p; ---p; - q1 *-- qp, Which is a product ofgprlmes.

Therefore P(k + 1).

P(n) holds for all n = 2 by the principle of induction.




Strong Induction

That hypothesis where we assume P(base case), ..., P(k) instead of just
P (k) is called a strong inductive hypothesis.

Strong induction is the same fundamental idea as weak (“regular”)
induction.

PgOZ IS true.
And P(0) - P(1), s& P(1)
And P(1) - P(2), so P(2).

And P(2) - P(3), so P(3).
And P(3) — P(4), so P(4).




Making Induction Proofs Pretty

All of our strong induction proofs will come in 5 easy(?) steps!
1. Define P(n). State that your proof is by induction on n.
2. Base Case: Show P(b) i.e. show the base case

BJ_ngH&tive Hypothesis: Suppose P(b) A --- A P(k) for an arbitrary k = b.
¢ ‘w4 D ——

4. Inductive Step: Show P(k + 1) (i.e. get [P(b) A---AP(k)] = P(k + 1/))

(S. Conclude by saying P(n) is true for all n = b by the principle of
induction. -




Strong Induction vs. Weak Induction
Think Was my recursive call might be on LOTS of
smaller values mergesort — you cut your array in half)

Think o@@d@as “my recursive call is always on one step

smaller”

Practical advice:

A strong hypothesis isn't wrong when you only need a weak one (but a
weak one is wrong when you need a strong one). Some people just

always write strong hypotheses. But it's easier to typo a strong
hypothesis.

Robbie leaves a blank spot where the IH is, and fills it in after the step.



Let's Try Another! Stamp Collecting

| have 4 cent stamps and 5_cent stamps (as many as | want of each).

—_—

Prove that | can makeZ&xactly n centsworth of stamps for all n > 12.
_——
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Try for a few values. VVO/?DO\ Sed S¢S




Stamp Collection (attempt)

Define P(n) | can make n cents of stamps with just 4 and 5 cent stamps.
We prove P(n) is true for all n = 12 by induction on n.

@ase Case:

12 cents can be made with three 4 cent stamps.
Inductive Hypothesis Suppose [maybe some other stuft and] P(k), for an

arbitrary k = 12.
g fel=\ 3% g Y

Inductive Step:

=1 a
We want to make k + 1 cents of stamps. By IH we can mak ents
exactly with stamps. Adding another 4_cent stamp gives exactly k + 1

cents.




Stamp Collection

s the proof right?

How do we know P(13)
We're not the base case, so our inductive hypothesis assumes P(12),

and then we sayﬂ?@en P(13).

Wait a second....

(f you go back s steps every time, you need s base cases.
Or else the first few values aren't proven.




Stamp Collection

Define P(n) | can mak ts of stamps with juan ent stamps.
rrdllb> Wi = P

We prove P(n) is true for all n = 12 by induction on n.

Base Case;

ents can be made with three 4 cent stamps. R \3_,\
3 cents can be made with two 4 cent stamps and one 5 cent stamp.\af Q)
14 cents can be made with one 4 cent stamp and two 5 cent stamps. $(M)
15 cents can be made with three 5 cent stamps.P&\%\

Inductive Hypothesis Suppa$e P(12)A P(13) A -+ A P(k) an arbitrary k > 15.
—~——

nductive Step: Ll > P(I¢ ) {LL\G\DU*“’S)
We want to make k % 1 cents of stamps. By IH we can make k — 3 cents exactly
with stamps. Adding another 4 cent stamp gives exactly k + 1 cents.

TN R Co |




A good last check

After you've finished writing an inductive proof, pause.

If your inductive step always goes back s steps, you need s base cases
(otherwise b + 1 will go back before the base cases you've shown). And

make sure your inductive hypothesis is strong enough.
Y ypP g /9

If your inductive step is going back a varying (unknown) number of
steps, check the first few values above the base case, make sure your
cases are really covered. And make sure your IH is strong.

¥

e —




Making Induction Proofs Pretty

All of our induction proofs will come in 5 easy(?) steps!

1. Define P(n). State that your proof is by induction on n.

2. Base Cases: Show P(b,,in), P(bmins1) - P(bmgy) 1.€. ShOw the base cases

3. Inductive Hypothesis: Suppose P(bmin) A P(bmin + 1) A--- A P(k) for an

arbitrary k > b,,, .. (The smallest value of k assumes all bases cases, but

nothing else) — —

4. Inductive Step: Show P(k + 1) (i.e. get [P(b,in) A AP(k)] - P(k + 1))
'{/5. Conclude by saying P(n) is true for all n = b,,,;;, by the principle of

induction.



Practical Advice

How many base cases do you need?
(Always at least one.

If you're analyzing recursive code or a recursive function, at least one for each base
case of the code/function.

@‘ you always go back s steps, at least s consecutive base cases.
—=knough to make sure every case is handled.



Stamp Collection, Done Wrong

Define P(n) | can make n cents of stamps with just 4 and 5 cent stamps.
We prove P(n) is true for all n = 12 by induction on n.

Base Case:

12 cents can be made with three 4 cent stamps.
Inductive Hypothesis Suppose P(k), k = 12.

Inductive Step:

We want to make k + 1 s-af-stamps-—By- make k cents
exactly with stamps.®Replace one of the 4 cent stampswith a 5 cent
stamp. =

P(n) holds for all n by the principle of induction.




Stamp Collection, Done Wrong

What if the starting point doesn’t have any 4 cent stamps?
Like, say, 15 cents = 5+5+5.




Gridding @
1/

've got a bunch of these 3 piece tiles™—

| want to fill a 2™"x2™ grid (n = 1) with the pieces, except for a 1x1 spot
IN a corner.




Gridding: Not a formal proof, just a sketch

Base Case:n =1 .

Inductive hypothesis: Suppose you can tile a 2%¥x2* grid, except for a
corner.

Inductive step: 2k+1x2k*1 divide into quarters. By IH can tile...

=
= [




Recursively Defined Functions

Just like induction works will with recursive code, it also works well for
recursively-defined functions.

f/il:%/ S5

a—

n =f(;’z—1)+f(n—2 foralln € N,n > 2.
~—— —

*This is a somewhat unusual definition, f(0) =0, f(1) = 1 is more
(common. - -

’QL‘}B (\D(L/D/>




Fibonacci Inequality

Show that f(n) < 2" for all n = 0 by induction.

—_—

fO=1  f()=1
fM)=f(n—1)+f(n—2) foralln € N,n > 2.




‘f() (b o fn- ) i nnzz
R . . n)=f(n-— +f(n— oralln € N,n = 2.
Fibonacci Inequality P

-
Show that f(n) @br all n > 0 by induction.=2) 2& =+ \3;
|

Define P(n) to be "f(n) < 2™" We show P(n) is trug foralln = 0 by | |

. . -—\
mductlon_o\ln. = (U\ - &
Base Cases: (n.=10): f(0) =1<1=2° =,
-— o [~
2m=1: f(1)=1<2=2" < Q)

nductive Hypothesis: Suppose P(0) A P(1) A---A P(k) for an arbitrary
k> 1.

Inductive step: 'R\\zf\;\) o N B%%%}B% Lot 35,

*’)’W]C'e. .

(Target: P(k + 1). 1.




. ] ) fO=1 fO=1
FlbOnaCC| |nequa||ty fM)=fn—1)+f(n—2)foralln € N,n = 2.

Show that f(n) < 2" for all n = 0 by induction.

Define P(n) to be "f(n) < 2™ We show P(n) is true for all n = 0 by
induction on n.

Base Cases: (n=0): f(0)=1<1 =2
(n=1): f(1)=1<2=21%
Inductive Hypothesis: Suppose P(0) A P(1) A--- A P(k) for an arbitrary k > 1.

Inductive step: f(k+ 1) = f(k) + f(k — 1) by the definition of the Fibonacci

numbers. Applying IH twice, we have f(k + 1) < 2F + 2871 < 2k 4 2k =
2k+1.

Therefore, we have P(n) for all n = 0 by the principle of induction.



Claim: 3|(24™—1) for all n

[Define P(n)]

Base Case
Inductive Hypothesis
Inductive Step

[conclusion]

(1)



N.

(1)

Claim: 3|(24™—1) for all n

Let P(n) be “3|(2°™—1)." We show P(n) holds for all n € N.

Base Case (n = 0) note that 2" —1 =2 -1 = 0. Since 3-0 = 0, and
0 is an integer, 3]|(2%°%-1).

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = 0
Inductive Step:

Target: P(k + 1), i.e. 3|(22**+D—1)
Therefore, we have P(n) for all n € N by the principle of induction.



Claim: 3|(2%™"—1) for all n € N.

Let P(n) be “3|(2%™"—1)." We show P(n) holds for all n € N.

Base Case ( (n,= Of notethat 24" —1=2°—-1=0.Since3-0=0, and 0 is an
integer, 3[(22°-1).

Inductive Hypothesis: Suppose P(k) holds for an arbitrary k = 0

Inductive Step: By inductive hypothesis, 3[(2%2"—1). i.e. there is an integer k
such that 3k = 2 ZX — 1. yP I ) 9

22(k+1) —1=4- 22k -1

(1)

FORCE the expression in your IH to appear

Target: P(k + 1), i.e. 3|(22(k*+D—1)
Therefore, we have P(n) for all n € N by the principle of induction.



N.

(1)

Claim: 3|(24™—1) for all n

Let P(n) be “3|(2°™—1)." We show P(n) holds for all n € N.

gf(szez. as%(n = 0) note that 22" — 1 =2%—-1 = 0. Since 3- 0 = 0, and 0 is an integer,

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = 0
Iznzc;l(uctilve Step: By inductive hypothesis, 3|(22%—1). i.e. there is an integer j such that 3j =

22(k+1) — 1 =4.22k — 1 =4(22k - 1) +4 -1

By IH, we can replace 22¥ — 1 with 3;j for an integer j

2201 1 =43)+4-1=34))+3=34j+1)

Since 4j + 1 is an integer, we meet the definition of divides and we have:
Target: P(k + 1), i.e. 3|(22(k*+D—1)

Therefore, we have P(n) for all n € N by the principle of induction.



Claim: 3|(24™—1) for all n

(1)
Z

That inductive step might still seem like magic.

It sometimes helps to run through examples, and look for patterns:
220 -1=0=3-0

2?21 -1=3=3-1 The divisor goes from k to 4k + 1
55 0-4-0+1=1
2¢4—1=15=3-5 15>4-141=5
5-4-54+1=21
223 -1=63=3-21
, That might give us a hint that 4k + 1 will be
224 _ 1 =255=3-85 i

in the algebra somewhere, and give us
, another intermediate target.
225 _1=1023 =3-341 ?



Induction: Hats!

You have n people in a line (n = 2). Each of them wears either a purple
hat or a . The person at the front of the line wears a purple hat.
The person at the back of the line wears a gold hat.

Show that there is a person with a purple hat next to someone with a
gold hat.

Yes this is kinda obvious. | promise this is good induction practice.

Yes you could argue this by contradiction. | promise this is good
induction practice.



Induction: Hats!

Define P(n) to be “in a line of gold and purple hats, with a purple hat at one
end and a gold hat at the other, there is a person with a purple hat next to
someone with a gold hat”

We show P(n) for all integers n = 2 by induction on n.
Base Case:n = 2

Inductive Hypothesis:

Inductive Step:

By the principle of induction, we have P(n) for all n > 2



Induction: Hats!

Define P(n) to be “in a line of gold and purple hats, with a purple hat at one end and a gold
hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show P(n) for all integers n = 2 by induction on n.

Base Case: n = 2 The line must be just a person with a purple hat and a person with a gold
hat, who are next to each other.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 2.

Inductive Step: Consider a line with k + 1 people in purple and gold hats, with a gold hat at
one end and a purple hat at the other.

Target: there is someone in a purple hat next to someone in a gold hat.
By the principle of induction, we have P(n) for alln > 2



Induction: Hats!

Define P(n) to be “in a line of %old and purple hats, with a purple hat at one end and a gold hat at
the other, there is a person with a purple hat next to someone with a gold hat”

We show P(n) for all integers n = 2 by induction on n.

Base Case: n = 2 The line must be just a person with a purple hat and a person with a gold hat, who
are next to each other.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 2.

Inductive Step: Consider a line with k + 1 people in purple and gold hats, with a gold hat at one end
and a purple hat at the other.

Case 1. There is someone with a purple hat next to the person in the gold hat at one end. Then those
people are the required adjacent opposite hats.

Case 2.. There is a person with a gold hat next to the person in the gold hat at the end. Then the line
from the second person to the end is length k, has a gold hat at one end and a purple hat at the
other. Applying the inductive hypothesis, there is an adjacent, opposite-hat wearing pair.

In either case we have P(k + 1).
By the principle of induction, we have P(n) for all n > 2



fO=1 f1)=1
Fibonacci Inequality Tw£<”>—f<" SARILEILA AL

Show that f(n) = 2™/?2 for all n > 2 by induction.
[Define P(n)]
Base Cases:

Inductive Hypothesis:
Inductive step:

Therefore, we have P(n) for all n = 0 by the principle of induction.



fO=1 fO=1

Fibonacci Inequality Twéd(’ﬂ=f<"—1>+f<"—2>f°f°""€N'"22-

Show that f(n) = 2™/2 for all n > 2 by induction.
Define P(n) to be “f(n) = 2™/2" We show P(n) is true for all n > 2 by induction on n.
Base Cases: f(2) = f(1) + f(0) =2 > 2 = 21 = 22/2

fA=fQ+fA)=2+1=3=2-222V2 =215 =23/

Inductive Hypothesis: Suppose P(2) A P(3) A--- A P(k) for an arbitrary k = 3.

Inductive step: f(k + 1) = f(k) + f(k — 1) by the definition of the Fibonacci numbers. Applying IH
twice, we have

Target: f(k + 1) > 2k+1)/2
Therefore, we have P(n) for all n = 0 by the principle of induction.



fO=1 fO=1

Fibonacci Inequality Twéd(’ﬂ=f<"—1>+f<"—2>f°f°""€N'"22-

Show that f(n) = 2™/2 for all n > 2 by induction.
Define P(n) to be “f(n) = 2™/2" We show P(n) is true for all n > 2 by induction on n.

Base Cases: f(2) = f(1) + f(0) =2 > 2 =21 =22/2
fA=fQ+fA)=2+1=3=2-222V2 =215 =23/

Inductive Hypothesis: Suppose P(2) A P(3) A--- A P(k) for an arbitrary k = 3.

Inductive step: f(k + 1) = f(k) + f(k — 1) by the definition of the Fibonacci numbers. Applying IH
twice, we have

flk+1) = 2k/Z 4 20=1)/2

> (k+1)/2

Therefore, we have P(n) for all n = 0 by the principle of induction.



fO=1 fO=1

Fibonacci Inequality Twéd(’ﬂ=f<"—1>+f<"—2>f°f°""€N'"22-

Show that f(n) = 2™/2 for all n > 2 by induction.
Define P(n) to be “f(n) = 2™/2" We show P(n) is true for all n > 2 by induction on n.

Base Cases: f(2) = f(1) + f(0) =2 > 2 =21 =22/2
fA=fQ+fA)=2+1=3=2-222V2 =215 =23/

Inductive Hypothesis: Suppose P(2) A P(3) A--- A P(k) for an arbitrary k = 3.

Inductive step: f(k + 1) = f(k) + f(k — 1) by the definition of the Fibonacci numbers. Applying IH
twice, we have

flk+1) = 2k/Z 4 20=1)/2
= 20-D/2(y7 + 1)
> 2k-1)/2 . 9
> 2(k+1)/2

Therefore, we have P(n) for all n = 0 by the principle of induction.






Even More Induction Practice

1 ifn=20
n-g(n—1) otherwise

Let g(n) = {

Let h(n) = n"

Claim: h(n) = g(n) for all integersn > 1



Even More Induction Practice

Define P(n) to be "h(n) = g(n) for all integersn > 1
We show P(n) for all n = 1 by induction on n.

Base Case

Inductive Hypothesis:

Inductive Step:

Thus P(k + 1) holds.
Therefore, we have P(n) for all n = 1 by induction on n.

Let g(n) = {
Let h(n) = n™

1

n-gn-1)

ifn=20
otherwise




Even More Induction Practice

Define P(n) to be "h(n) = g(n) for all integersn > 1

We show P(n) for all n = 1 by induction on n.
BaseCase(n=1):h(n)=1'=1>1=1-1=1-g9(0) = g(1).
Inductive Hypothesis: Suppose P (k) is true for an arbitrary k > 1.
Inductive Step:

glk+1)=(k+1)- g(k)

= (k + 1)k
Thus P(k + 1) holds.
Therefore, we have P(n) for all n = 1 by induction on n.

Let g(n) = {n '1g(n —1)
Let h(n) = n™

ifn=20
otherwise




Even More Induction Practice

Define P(n) to be "h(n) = g(n) for all integersn > 1
We show P(n) for all n = 1 by induction on n.
BaseCase(n=1):h(n)=1'=1>1=1-1=1-g9(0) = g(1).
Inductive Hypothesis: Suppose P (k) is true for an arbitrary k > 1.
Inductive Step:
gk+1)=((k+1) - gk)

< (k+1)-h(k) byIH.

= (k + 1)k
Thus P(k + 1) holds.
Therefore, we have P(n) for all n = 1 by induction on n.

Let g(n) = {n '1g(n —1)
Let h(n) = n™

ifn=20
otherwise




Even More Induction Practice

Define P(n) to be "h(n) = g(n) for all integersn > 1
We show P(n) for all n = 1 by induction on n.
BaseCase(n=1):h(n)=1'=1>1=1-1=1-g9(0) = g(1).
Inductive Hypothesis: Suppose P (k) is true for an arbitrary k > 1.
Inductive Step:
glk+1)=(k+1)- gk)

<(k+1)- -hk) by IH.

n-gn-1)

<(k+1)-kk by definition of h(k)
<(k+1)-(k+ 1k
= (k + 1)k,
Thus P(k + 1) holds.
Therefore, we have P(n) for all n = 1 by induction on n. Let g(n) = { 1
Let h(n) = n™

ifn=20
otherwise




Even More Induction Practice

Define P(n) to be "h(n) = g(n) for all integersn > 1
We show P(n) for all n = 1 by induction on n.
BaseCase(n=1):h(n)=1'=1>1=1-1=1-g9(0) = g(1).
Inductive Hypothesis: Suppose P (k) is true for an arbitrary k > 1.
Inductive Step:
glk+1)=(k+1)- gk)

<(k+1)- -hk) by IH.

n-gn-1)

<(k+1)-kk by definition of h(k)
<(k+1)-(k+ 1k
= (k + 1)k,
Thus P(k + 1) holds.
Therefore, we have P(n) for all n = 1 by induction on n. Let g(n) = { 1
Let h(n) = n™

ifn=20
otherwise




Even More Induction Practice: Sums

. (n+1)(3n+4)
Let P(n) be Y1 g2+ 3i =

Show P(n) for all n € N by induction on n.
Base Case (n = 0):

nductive Hypothesis:

nductive Step:

‘Conclusion]



Even More Induction Practice: Sums

Let P(n) be $1y 2 + 3i = T2
Show P(n) for all n € N by induction on n.
Base Case m = 0): Y1 2 +3i=2= g _ (O+1)(23.0+4)

Inductive Hypothesis: Suppose P (k) is true for an arbitrary k = 0.
Inductive Step:

([k+1]+1)(3[k+1]+4)

Target: Y5412 + 3i = -




Even More Induction Practice: Sums

Let P(n) be X 2 + 3i = DA
Show P(n) for all n € N by induction on n.
Base Case m = 0): Y1 2 +3i=2= g _ (O+1)(23.0+4)

Inductive Hypothesis: Suppose P (k) is true for an arbitrary k = 0.
Inductive Step:

Y 2+3i= (22 +30) +(2+3(k+1)). By H, we have:
Y
Zk+1 243 = _ (k+1)(3k+4)
2

+2+3k+3=?777

(Jk+1]+1)@B[k+ 1] +4)
2




Even More Induction Practice: Sums

_ (n+1)(3n+4)

Let P(n) be },i—o2 + 3i =

Show P(n) for aII n € N by induction on n.

Base Case n =0): Y? ,2+3i=2= % _ (O+1)(23.0+4)

Inductive Hypothesis: Suppose P (k) is true for an arbitrary k = 0.

Inductive Step:
Y2 +3i = 2+ 3i) + (24 3k +1)). By IH, we have:

yhilo 4 3 _ k+D)GKH4) | 5 4 343 = 3K2+7K+4 4 Sk+10 3k?+13k+14
Ghan(ced) _ (et +9) 2 2 2
2 2

Therefore, P(n) holds for all n € N by induction on n.



