
Structural Induction
and Regular Expressions 

CSE 311 Autumn 20

Lecture 19

Warm up:

What is the following recursively-defined set?

Basis Step: 4 ∈ 𝑆, 5 ∈ 𝑆
Recursive Step: If 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑆 then 𝑥 − 𝑦 ∈ 𝑆

xkcd.com/208



Announcements

We have a few students still working on the midterm (due to special 
circumstances or personal emergencies)

Please don’t discuss the exam yet on Ed.
We’ll release solutions to the midterm later this week.

I’ll discuss more on Wednesday, once we have a slightly better sense of how long it 
took everyone from the responses to the last question. 

You’re welcome to talk to each other about it, just make sure whoever you’re talking 
to has finished. 

HW6 comes out tonight. It’s due right before Thanksgiving.
Designed to be done by Monday if you need to travel. Yes, I’m aware of how 
unconvincing that statement may sound.



Strings

Why these recursive definitions? 

They’re the basis for regular expressions, which we’ll introduce next 
week. Answer questions like “how do you search for anything that looks 
like an email address”

First, we need to talk about strings.

Σ will be an alphabet the set of all the letters you can use in words.

Σ∗ is the set of all words all the strings you can build off of the letters.



Strings

𝜀 is “the empty string”

The string with 0 characters – “” in Java (not null!)

Σ∗:

Basis: 𝜀 ∈ Σ∗.

Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ then 𝑤𝑎 ∈ Σ∗

𝑤𝑎 means the string of 𝑤 with the character 𝑎 appended.

You’ll also see 𝑤 ⋅ 𝑎 (a ⋅ to mean “concatenate” i.e. + in Java) 



Functions on Strings
Since strings are defined recursively, most functions on strings are as well.

Length:

len(𝜀)=0; 

len(𝑤𝑎)=len(𝑤)+1 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Reversal:

𝜀𝑅 = 𝜀; 
𝑤𝑎 𝑅 = 𝑎𝑤𝑅 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Concatenation

𝑥 ⋅ 𝜀 = 𝑥 for all 𝑥 ∈ Σ∗; 
𝑥 ⋅ 𝑤𝑎 = 𝑥 ⋅ 𝑤 𝑎 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Number of 𝑐’s in a string

#𝑐 𝜀 = 0
#𝑐 𝑤𝑐 = #𝑐 𝑤 + 1 for 𝑤 ∈ Σ∗; 
#𝑐 𝑤𝑎 = #𝑐(𝑤) for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ ∖ {𝑐}.



Claim len(x⋅y)=len(x) + len(y) for all 𝑥, 𝑦 ∈ Σ∗.

Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “

Notice the strangeness of this 𝑃() there is a “for all 𝑥“ inside the 
definition of 𝑃(𝑦).

That means we’ll have to introduce an arbitrary 𝑥 as part of the base 
case and the inductive step!



Claim len(x⋅y)=len(x) + len(y) for all 𝑥, 𝑦 ∈ Σ∗.

Define Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “

We prove 𝑃(𝑦) for all 𝑦 ∈ Σ∗ by structural induction.

Base Case:

Inductive Hypothesis:

Inductive Step:

Σ∗:Basis: 𝜀 ∈ Σ∗.
Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ then 𝑤𝑎 ∈ Σ∗



Claim len(x⋅y)=len(x) + len(y) for all 𝑥, 𝑦 ∈ Σ∗.

Define Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “

We prove 𝑃(𝑦) for all 𝑦 ∈ Σ∗ by structural induction.

Base Case: Let 𝑥 be an arbitrary string, len(𝑥 ⋅ 𝜖)=len(x)
=len(x)+0=len(x)+len(𝜀). So we have 𝑃(𝜀).

Inductive Hypothesis: Suppose 𝑃(𝑤) for an arbitrary 𝑤 ∈ Σ∗.

Inductive Step:

Σ∗:Basis: 𝜀 ∈ Σ∗.
Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ then 𝑤𝑎 ∈ Σ∗



Claim len(x⋅y)=len(x) + len(y) for all 𝑥, 𝑦 ∈ Σ∗.

Define Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “

We prove 𝑃(𝑦) for all 𝑦 ∈ Σ∗ by structural induction.

Base Case: Let 𝑥 be an arbitrary string, len(𝑥 ⋅ 𝜖)=len(x)
=len(x)+0=len(x)+len(𝜀). So we have 𝑃(𝜀).

Inductive Hypothesis: Suppose 𝑃(𝑤) for an arbitrary 𝑤 ∈ Σ∗.

Inductive Step: Let 𝑎 be an arbitrary character and let 𝑥 be an arbitrary string. 

len(xwa) =len(xw)+1 (by definition of len)

=len(x) + len(w) + 1 (by IH)

=len(x) + len(wa) (by definition of len)

Therefore, len(xwa)=len(x) + len(wa)
Σ∗:Basis: 𝜀 ∈ Σ∗.
Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ then 𝑤𝑎 ∈ Σ∗



More Structural Sets

Binary Trees are another common source of structural induction.

Basis: A single node is a rooted binary tree.

Recursive Step: If 𝑇1 and 𝑇2 are rooted binary trees with roots 𝑟1 and 𝑟2, 
then a tree rooted at a new node, with children 𝑟1, 𝑟2 is a binary tree.

𝑇1 𝑇2



Functions on Binary Trees

size(    )=1

size(              ) = size(𝑇1) + size(𝑇2) + 1

height(   ) = 0

height(             ) = 1+max(height(𝑇1),height(𝑇2))

𝑇1 𝑇2

𝑇1 𝑇2



Structural Induction on Binary Trees

Let 𝑃 𝑇 be “size(𝑇) ≤ 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1“. We show 𝑃(𝑇) for all binary 
trees 𝑇 by structural induction.

Base Case: Let 𝑇 = . size(𝑇)=1 and height(𝑇) = 0, so size(𝑇)=1≤ 2 −
1 = 20+1 − 1 = 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1.

Inductive Hypothesis: Suppose P(𝐿) and P(𝑅) for arbitrary binary trees 
𝐿, 𝑅.

Inductive Step: Let 𝑇 = . 

𝐿 𝑅



Structural Induction on Binary Trees (cont.)

Let 𝑃 𝑇 be “size(𝑇) ≤ 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1“. We show 𝑃(𝑇) for all binary trees 𝑇 by 
structural induction.

Inductive Step: Let 𝑇 = . 

height(𝑇)=1 + max{ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 , ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 }

size(𝑇)= 1 +size(𝐿)+size(𝑅)

So 𝑃(𝑇) holds, and we have 𝑃(𝑇) for all binary trees 𝑇 by the principle of 
induction.

𝐿 𝑅



Structural Induction on Binary Trees (cont.)

Let 𝑃 𝑇 be “size(𝑇) ≤ 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1“. We show 𝑃(𝑇) for all binary trees 𝑇 by structural 
induction.

Inductive Step: Let 𝑇 = . 

height(𝑇)=1 + max{ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 , ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 }

size(𝑇)= 1 +size(𝐿)+size(𝑅)

size(𝑇)=1+size(𝐿)+size 𝑅 ≤ 1 + 2ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 +1 − 1 +2ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 +1 −1 (by IH)

≤ 2ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 +1 +2ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 +1 −1 (cancel 1’s)

≤ 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑇) + 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑇) − 1 = 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1 (𝑇 taller than subtrees)

So 𝑃(𝑇) holds, and we have 𝑃(𝑇) for all binary trees 𝑇 by the principle of induction.

𝐿 𝑅



Part 3 of the course!



Course Outline

Symbolic Logic (training wheels; lectures 1-8) 
Just make arguments in mechanical ways.

Set Theory/Arithmetic (bike in your backyard; lectures 9-19)

Models of computation (biking in your neighborhood; lectures 19-30)
Still make and communicate rigorous arguments

But now with objects you haven’t used before.

-A first taste of how we can argue rigorously about computers.

This week: regular expressions and context free grammars – understand these 
“simpler computers”

After Thanksgiving: what these simple computers can do
Last week of class: what simple computers (and normal ones) can’t do.



Regular Expressions



Regular Expressions

I have a giant text document. And I want to find all the email addresses 
inside. What does an email address look like?

[some letters and numbers] @ [more letters] . [com, net, or edu]

We want to ctrl-f for a pattern of strings rather than a single string



Languages

A set of strings is called a language.

Σ∗ is a language

“the set of all binary strings of even length” is a language.

“the set of all palindromes” is a language.

“the set of all English words” is a language.

“the set of all strings matching a given pattern” is a language.



Regular Expressions

Every pattern automatically gives you a language .
The set of all strings that match that pattern.

We’ll formalize “patterns” via “regular expressions”

𝜀 is a regular expression. The empty string itself matches the pattern (and nothing 
else does).

∅ is a regular expression. No strings match this pattern. 

𝑎 is a regular expression, for any 𝑎 ∈ Σ (i.e. any character). The character itself 
matching this pattern. 



Regular Expressions

Basis:
𝜀 is a regular expression. The empty string itself matches the pattern (and nothing 
else does).

∅ is a regular expression. No strings match this pattern. 

𝑎 is a regular expression, for any 𝑎 ∈ Σ (i.e. any character). The character itself 
matching this mattern. 

Recursive
If 𝐴, 𝐵 are regular expressions then (𝐴 ∪ 𝐵) is a regular expression

matched by any string that matches 𝐴 or that matches 𝐵 [or both]).

If 𝐴, 𝐵 are regular expressions then 𝐴𝐵 is a regular expression.

matched by any string 𝑥 such that 𝑥 = 𝑦𝑧, 𝑦 matches 𝐴 and 𝑧 matches 𝐵.

If 𝐴 is a regular expression, then 𝐴∗ is a regular expression.

matched by any string that can be divided into 0 or more strings that match 𝐴.



Regular Expressions

(𝑎 ∪ 𝑏𝑐)

0 0 ∪ 1 1

0∗

0 ∪ 1 ∗



Regular Expressions

(𝑎 ∪ 𝑏𝑐)

Corresponds to {𝑎, 𝑏𝑐}

0 0 ∪ 1 1

Corresponds to {001, 011} all length three strings that start with a 0 and 
end in a 1.

0∗

Corresponds to {𝜀, 0,00,000,0000,… }

0 ∪ 1 ∗

Corresponds to the set of all binary strings.



More Examples

0∗1∗ ∗

0∗1∗

0 ∪ 1 ∗ 00 ∪ 11 ∗ 0 ∪ 1 ∗

00 ∪ 11 ∗



More Examples

0∗1∗ ∗

All binary strings

0∗1∗

All binary strings with any 0’s coming before any 1’s

0 ∪ 1 ∗ 00 ∪ 11 ∗ 0 ∪ 1 ∗

This is all binary strings again. Not a “good” representation, but valid.

00 ∪ 11 ∗

All binary strings where 0s and 1s come in pairs



Practical Advice

Check 𝜀 and 1 character strings to make sure they’re excluded or 
included (easy to miss those edge cases). 

If you can break into pieces, that usually helps.

“nots” are hard (there’s no “not” in standard regular expressions
But you can negate things, usually by negating at a low-level. E.g. to have binary 
strings without 00, your building blocks are 1’s and 0’s followed by a 1

01 ∪ 1 ∗(0 ∪ 𝜀) then make adjustments for edge cases (like ending in 0)

Remember ∗ allows for 0 copies! To say “at least one copy” use 𝐴𝐴∗.



Regular Expressions In practice
EXTREMELY useful. Used to define valid “tokens” (like legal variable names or all known keywords when writing 
compilers/languages)

Used in grep to actually search through documents.
Pattern p = Pattern.compile("a*b"); 

Matcher m = p.matcher("aaaaab"); 

boolean b = m.matches();

^ start of string     

$ end of string

[01] a 0 or a 1     

[0-9] any single digit       

\. period    \, comma  \- minus

. any single character

ab         a followed by b           (AB)

(a|b) a or b (A  B)

a? zero or one of a          (A  )

a* zero or more of a          A*

a+ one or more of a          AA* 

e.g.   ^[\-+]?[0-9]*(\.|\,)?[0-9]+$

General form of decimal number  e.g.  9.12  or -9,8 (Europe)



Regular Expressions In Practice

When you only have ASCII characters (say in a programming language)

| usually takes the place of ∪

? (and perhaps creative rewriting) take the place of 𝜀.

E.g. 0 ∪ 𝜀 1 ∪ 10 ∗ is 0?(1|10)*



A Final Vocabulary Note

Not everything can be represented as a regular expression.
E.g. “the set of all palindromes” is not the language of any regular expression.

Some programming languages define features in their “regexes” that 
can’t be represented by our definition of regular expressions. 
Things like “match this pattern, then have exactly that substring appear later.

So before you say “ah, you can’t do that with regular expressions, I 
learned it in 311!” you should make sure you know whether your 
language is calling a more powerful object “regular expressions”.

But the more “fancy features” beyond regular expressions you use, the 
slower the checking algorithms run, (and the harder it is to force the 
expressions to fit into the framework) so this is still very useful theory.


