
Regular Expressions 
(for real this time)

CSE 311 Autumn 2020

Lecture 20

Warm up:

How would you search through a document for all email 

addresses inside? (e.g. with control-f)

What if it was a document full of tweets?



Midterm Post Mortem

That did not go as I planned.

I estimated most students would be able to finish in 3 hours or so.

From the results of the survey:

25% of students said they took 5 hours or less

50% of students said they took 7 hours or less

75% of students said they took 9 hours or less.

And there was a long tail in those last percentiles. Mean was a little 
below 8.



Midterm Post Mortem

Why was I off by a factor of ~3?

Standard procedure is to have a subset of the TAs take a draft of the 
exam and time themselves. And double or triple the time to estimate
how long is fair for an in-person exam. 

9 TAs took a version of the exam.

4 took a harder initial version, all finished in 1.5 hours or less

5 took (essentially) the final version, all finished in 55 minutes or less.

Normal math → 3 hours should be enough?



Why the normal math didn’t work 
(hypotheses)

TAs had abnormal “unfair advantages” to make them faster:

Problem 1 used predicates with domain restriction built-in
Prior 311 iterations have used these frequently; it was in our review materials, and once or 
twice in section, but wasn’t a focus on the homework.

So the TAs were even more familiar than you were.

Problem 3 was a combination of sets and a “sneak peak” at something 
coming next week.

I was expecting you to “process something new” they were “processing 
something old.”

I told TAs to take “under test conditions” you weren’t under test conditions.



Why the normal math didn’t work 
(hypotheses)

Math built on expectation of students doing significant studying 
beforehand.

You probably didn’t study for an open book exam the way students 
usually do for a closed book one. 

Particularly since we delayed the HW5 deadline so close to the midterm.

In an exam setting, when you don’t get a problem you skip it and throw 
whatever down with 3 minutes left.

In the take-home setting, you might take an extra 2-3 (or 11) hours to 
get one more good step/a little more progress/etc.



Sooooooooooooo…what are we doing about 
the final?

I won’t give you an exam that’s much longer than the midterm was 
TAs should still be able to finish in an hour-or-so

And I’ll tell you the TA time instead of estimating your time.

But we’ll extend the window that you’re allowed to work in (If a significant portion 
of the class is going to take 8+ hours, I want you to have that time to do it even if 
you have other work to do finals week).

Exact window TBD – have to discuss with TAs to make sure we can get everything 
graded in time for me to turn in grades.



Want to talk to me about grades?

https://calendly.com/robbieweber/311grade?month=2020-11

Will take you to a Calendly page.
I have 15 minute slots most of the day tomorrow. 

Reserve an appointment there and we can talk tomorrow.

We won’t have exam grades yet, but I’ll have a sense of how most of you 
did.

https://calendly.com/robbieweber/311grade?month=2020-11


Part 3 of the course!



Course Outline

Symbolic Logic (training wheels; lectures 1-8) 
Just make arguments in mechanical ways.

Set Theory/Arithmetic (bike in your backyard; lectures 9-19)

Models of computation (biking in your neighborhood; lectures 19-30)
Still make and communicate rigorous arguments

But now with objects you haven’t used before.

-A first taste of how we can argue rigorously about computers.

This week: regular expressions and context free grammars – understand these 
“simpler computers”

After Thanksgiving: what these simple computers can do
Last week of class: what simple computers (and normal ones) can’t do.



Regular Expressions



Regular Expressions

I have a giant text document. And I want to find all the email addresses 
inside. What does an email address look like?

[some letters and numbers] @ [more letters] . [com, net, or edu]

We want to ctrl-f for a pattern of strings rather than a single string



Languages

A set of strings is called a language.

Σ∗ is a language

“the set of all binary strings of even length” is a language.

“the set of all palindromes” is a language.

“the set of all English words” is a language.

“the set of all strings matching a given pattern” is a language.



Regular Expressions

Every pattern automatically gives you a language .
The set of all strings that match that pattern.

We’ll formalize “patterns” via “regular expressions”

𝜀 is a regular expression. The empty string itself matches the pattern (and nothing 
else does).

𝑎 is a regular expression, for any 𝑎 ∈ Σ (i.e. any character). The character itself 
matching this pattern. 

∅ is a regular expression. No strings match this pattern. 



Regular Expressions

Basis:
𝜀 is a regular expression. The empty string itself matches the pattern (and nothing 
else does).

∅ is a regular expression. No strings match this pattern. 

𝑎 is a regular expression, for any 𝑎 ∈ Σ (i.e. any character). The character itself 
matching this pattern. 

Recursive
If 𝐴, 𝐵 are regular expressions then (𝐴 ∪ 𝐵) is a regular expression

matched by any string that matches 𝐴 or that matches 𝐵 [or both]).

If 𝐴, 𝐵 are regular expressions then 𝐴𝐵 is a regular expression.

matched by any string 𝑥 such that 𝑥 = 𝑦𝑧, 𝑦 matches 𝐴 and 𝑧 matches 𝐵.

If 𝐴 is a regular expression, then 𝐴∗ is a regular expression.

matched by any string that can be divided into 0 or more strings that match 𝐴.



Regular Expressions

(𝑎 ∪ 𝑏𝑐)

0 0 ∪ 1 1

0∗

0 ∪ 1 ∗



Regular Expressions

(𝑎 ∪ 𝑏𝑐)

Corresponds to {𝑎, 𝑏𝑐}

0 0 ∪ 1 1

Corresponds to {001, 011}

all length three strings that start with a 0 and end in a 1.

0∗

Corresponds to {𝜀, 0,00,000,0000,… }

0 ∪ 1 ∗

Corresponds to the set of all binary strings.



More Examples

0∗1∗ ∗

0∗1∗

0 ∪ 1 ∗ 00 ∪ 11 ∗ 0 ∪ 1 ∗

00 ∪ 11 ∗
Fill out the poll everywhere for 

Activity Credit!

Go to pollev.com/cse311 and login 

with your UW identity

Or text cse311 to 22333



More Examples

0∗1∗ ∗

All binary strings

0∗1∗

All binary strings with any 0’s coming before any 1’s

0 ∪ 1 ∗ 00 ∪ 11 ∗ 0 ∪ 1 ∗

This is all binary strings again. Not a “good” representation, but valid.

00 ∪ 11 ∗

All binary strings where 0s and 1s come in pairs



More Practice

You can also go the other way

Write a regular expression for “the set of all binary strings of odd 
length”

Write a regular expression for “the set of all binary strings with at most 
two ones”

Write a regular expression for “strings that don’t contain 00”



More Practice

You can also go the other way

Write a regular expression for “the set of all binary strings of odd 
length”

0 ∪ 1 00 ∪ 01 ∪ 10 ∪ 11 ∗

Write a regular expression for “the set of all binary strings with at most 
two ones”

0∗ 1 ∪ 𝜖 0∗ 1 ∪ 𝜖 0∗

Write a regular expression for “strings that don’t contain 00”

01 ∪ 1 ∗(0 ∪ 𝜖) (key idea: all 0s followed by 1 or end of the string)



Practical Advice

Check 𝜀 and 1 character strings to make sure they’re excluded or 
included (easy to miss those edge cases). 

If you can break into pieces, that usually helps.

“nots” are hard (there’s no “not” in standard regular expressions
But you can negate things, usually by negating at a low-level. E.g. to have binary 
strings without 00, your building blocks are 1’s and 0’s followed by a 1

01 ∪ 1 ∗(0 ∪ 𝜀) then make adjustments for edge cases (like ending in 0)

Remember ∗ allows for 0 copies! To say “at least one copy” use 𝐴𝐴∗.



Regular Expressions In Practice
EXTREMELY useful. Used to define valid “tokens” (like legal variable names or all known keywords when writing 
compilers/languages)

Used in grep to actually search through documents.
Pattern p = Pattern.compile("a*b"); 

Matcher m = p.matcher("aaaaab"); 

boolean b = m.matches();

^ start of string     

$ end of string

[01] a 0 or a 1     

[0-9] any single digit       

\. period    \, comma  \- minus

. any single character

ab         a followed by b           (AB)

(a|b) a or b (A  B)

a? zero or one of a          (A  )

a* zero or more of a          A*

a+ one or more of a          AA* 

e.g.   ^[\-+]?[0-9]*(\.|\,)?[0-9]+$

General form of decimal number  e.g.  9.12  or -9,8 (Europe)



Regular Expressions In Practice

When you only have ASCII characters (say in a programming language)

| usually takes the place of ∪

? (and perhaps creative rewriting) take the place of 𝜀.

E.g. 0 ∪ 𝜀 1 ∪ 10 ∗ is 0?(1|10)*



A Final Vocabulary Note

Not everything can be represented as a regular expression.
E.g. “the set of all palindromes” is not the language of any regular expression.

Some programming languages define features in their “regexes” that 
can’t be represented by our definition of regular expressions. 
Things like “match this pattern, then have exactly that substring appear later.

So before you say “ah, you can’t do that with regular expressions, I 
learned it in 311!” you should make sure you know whether your 
language is calling a more powerful object “regular expressions”.

But the more “fancy features” beyond regular expressions you use, the 
slower the checking algorithms run, (and the harder it is to force the 
expressions to fit into the framework) so this is still very useful theory.



Context Free Grammars



What Can’t Regular Expressions Do?

Some easy things 
Things where you could say whether a string matches with just a loop
{0𝑘1𝑘: 𝑘 ≥ 0}

The set of all palindromes.

And some harder things

Expressions with matched parentheses

Properly formed arithmetic expressions

Context Free Grammars can solve all of these problems!



Context Free Grammars

A context free grammar (CFG) is a finite set of production rules over:
An alphabet Σ of “terminal symbols”

A finite set 𝑉 of “nonterminal symbols”

A start symbol (one of the elements of 𝑉) usually denoted 𝑆.

A production rule for a nonterminal 𝐴 ∈ 𝑉 takes the form

𝐴 → 𝑤1 𝑤2 ⋯|𝑤𝑘

Where each 𝑤𝑖 ∈ 𝑉 ∪ Σ ∗ is a string of nonterminals and terminals.



Context Free Grammars

We think of context free grammars as generating strings.

1. Start from the start symbol 𝑆.

2. Choose a nonterminal in the string, and a production rule 𝐴 →
𝑤1 𝑤2 … |𝑤𝑘 replace that copy of the nonterminal with 𝑤𝑖 .

3. If no nonterminals remain, you’re done! Otherwise, goto step 2.

A string is in the language of the CFG iff it can be generated starting 
from 𝑆.



Examples

𝑆 → 0𝑆0 1𝑆1 0|1|𝜀

𝑆 → 0𝑆|𝑆1|𝜀

𝑆 → 𝑆 |𝑆𝑆|𝜀


