
Irregular Languages



Announcements

(draft) lecture slides are up for the last few lectures.

You’re responsible for everything in deck 26 (except as marked)

There’s a problem on the final that says “you choose which of these to 
do: prove this language is irregular, prove this set is uncountable.”

You can use late days on HW8 (but they cut into time when the final is 
available) 

Review session Friday at 6:30. Zoom link coming. Will be recorded.



What can’t NFAs/DFAs/Regexes do?

There are languages that can’t be recognized by a DFA.

{0𝑘1𝑘|𝑘 ≥ 0} is the classic example.

Let’s prove it.



{0𝑘1𝑘|𝑘 ≥ 0} is not regular

Not a proof:

{0𝑘1𝑘|𝑘 ≥ 0} is regular if and only if there’s a DFA the recognizes it.

To know if the number of 0’s is equal to the number of 1’s that DFA is 
going to have to count that number 𝑘.

But that number could be arbitrarily big.

And we have some finite number of states less than that. 

So it’s not regular!

“the DFA must work like this” isn’t 

a rigorous argument.



“The DFA must do this”

Consider “The set of all binary strings, where the number of “01” 
substrings is equal to the number of “10” substrings.”

The DFA must count the number of “01” and “10” substrings, right?

NO!

Between every 01 substring there’s a 10 substring. 

0001111000011101011

You don’t have to count the total, just the difference between them. 
And that difference never exceeds 1. 



In general…

Try to avoid saying “in order to solve problem X, a machine must do Y”
It’s almost impossible to rigorously justify.

And it’s easy to trick yourself – you’ll have to argue no one is more clever than you 
are.

The right way to argue around this claim is to directly argue every DFA 
does the wrong thing (rather than indirectly that they can’t do the right 
thing).



A Proof Outline

Claim: 0𝑘1𝑘: 𝑘 ≥ 0 is an irregular language.

Proof:

Suppose, for the sake of contradiction, that {0𝑘1𝑘: 𝑘 ≥ 0} is regular.

Then there is a DFA 𝑀 such that 𝑀 accepts exactly {0𝑘1𝑘: 𝑘 ≥ 0}.

We want to show 𝑀 doesn’t actually accept 0𝑘1𝑘: 𝑘 ≥ 0

How do we do that?



Forcing a mistake

We don’t know anything about the DFA. 

Well except that it is a DFA.

So it is deterministic. I.e. if you’re in a particular state and you read a 
certain character there’s only one place to go.

It’s also finite. I.e. there are not an infinite number of states.



Forcing a Mistake

What if…

We could find a set of strings that all must be in different states.

Too many of them. Enough that two must be in the same state.

How would we know two strings have to be in different states?

How many strings is enough? infinity



Forcing A Mistake

How do we know 𝑥, 𝑦 must be in different states?

Well if one would be accepted and the other rejected, that would be a 
clear sign.

Or if there’s some string 𝑧 where 𝑥𝑧 is accepted but 𝑦𝑧 is rejected (or 
vice versa).

The machine is deterministic! If 𝑥 and 𝑦 take you to the same state, then 
𝑥𝑧 and 𝑦𝑧 are also in the same state!



A Proof Outline

Claim: 0𝑘1𝑘: 𝑘 ≥ 0 is an irregular language.

Proof:

Suppose, for the sake of contradiction, that {0𝑘1𝑘: 𝑘 ≥ 0} is regular.

Then there is a DFA 𝑀 such that 𝑀 accepts exactly {0𝑘1𝑘: 𝑘 ≥ 0}.

We want to show 𝑀 doesn’t actually accept 0𝑘1𝑘: 𝑘 ≥ 0

How do we do that?



A Proof Outline

Claim: 0𝑘1𝑘: 𝑘 ≥ 0 is an irregular language.

Proof:

Suppose, for the sake of contradiction, that {0𝑘1𝑘: 𝑘 ≥ 0} is regular.

Then there is a DFA 𝑀 such that 𝑀 accepts exactly {0𝑘1𝑘: 𝑘 ≥ 0}.

Let 𝑆 = [TODO]. S is an infinite set of strings.

Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such 
that 𝑥 and 𝑦 go to the same state. We don’t get to choose 𝑥, 𝑦

Consider the string 𝑧 =[TODO] We do get to choose 𝑧 depending on 𝑥, 𝑦



A Proof Outline

Claim: 0𝑘1𝑘: 𝑘 ≥ 0 is an irregular language.

…

Let 𝑆 = [TODO]. S is an infinite set of strings.

Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥
and 𝑦 go to the same state. We don’t get to choose 𝑥, 𝑦

Consider the string 𝑧 =[TODO] We do get to choose 𝑧 depending on 𝑥, 𝑦

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also 
lead to the same state 𝑞 in 𝑀. Observe that 𝑥𝑧 ∈ {0𝑘1𝑘: 𝑘 ≥ 0} but 𝑦𝑧 ∉
{0𝑘1𝑘: 𝑘 ≥ 0}. So 𝑀 does not actually recognize {0𝑘1𝑘: 𝑘 ≥ 0}. That’s a 
contradiction!

Therefore, {0𝑘1𝑘: 𝑘 ≥ 0} is an irregular language.



Filling in the blanks

Need 𝑆

Such that

1. 𝑆 is infinite

2. For every pair of strings 𝑥, 𝑦 in 𝑆, there is a suffix 𝑧 such that one of 
𝑥𝑧, 𝑦𝑧 is in the language and the other is not in the language.

Let 𝑆 = {0𝑘: 𝑘 ≥ 0}

𝑥 = 0𝑎, 𝑦 = 0𝑏 with 𝑎 ≠ 𝑏. Take 𝑧 = 1𝑎.



Claim: 0𝑘1𝑘: 𝑘 ≥ 0 is an irregular language.

Proof:

Suppose, for the sake of contradiction, that {0𝑘1𝑘: 𝑘 ≥ 0} is regular.

Then there is a DFA 𝑀 such that 𝑀 accepts exactly {0𝑘1𝑘: 𝑘 ≥ 0}.

Let 𝑆 = {0𝑘: 𝑘 ≥ 0}. 

Because the DFA is finite and 𝑆 is infinite, there are two (different) strings 𝑥, 𝑦
in 𝑆 such that 𝑥 and 𝑦 go to the same state when read by 𝑀. Since both are 
in 𝑆, 𝑥 = 0𝑎 for some integer 𝑎, and 𝑦 = 0𝑏 for some integer 𝑏, with 𝑎 ≠ 𝑏.

Consider the string 𝑧 = 1a. 𝑥𝑧 = 0𝑎1𝑎 ∈ {0𝑘1𝑘: 𝑘 ≥ 0} but 𝑦𝑧 = 0𝑏1𝑎 ∉
{0𝑘1𝑘: 𝑘 ≥ 0}. 

Since 𝑥, 𝑦 both end up in the same state, and we appended the same 𝑧, both 
𝑥𝑧 and 𝑦𝑧 end up in the same state of 𝑀. 

Since 𝑥𝑧 ∈ 0𝑘1𝑘: 𝑘 ≥ 0 and 𝑦𝑧 ∉ 0𝑘1𝑘: 𝑘 ≥ 0 , 𝑀 does not 
recognize 0𝑘1𝑘: 𝑘 ≥ 0 . But that’s a contradiction!

So 0𝑘1𝑘: 𝑘 ≥ 0 must be an irregular language.



Full outline

1. Suppose for the sake of contradiction that 𝐿 is regular. Then there is some 
DFA 𝑀 that recognizes 𝐿.

2. Let 𝑆 be [fill in with an infinite set of prefixes]. 

3. Because the DFA is finite and 𝑆 is infinite, there are two (different) strings 
𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same state when read by 𝑀 [you don’t 
get to control 𝑥, 𝑦 other than having them not equal and in 𝑆]

4. Consider the string 𝑧 [argue exactly one of xz, yz will be in L] 

5. Since 𝑥, 𝑦 both end up in the same state, and we appended the same 𝑧, 
both 𝑥𝑧 and 𝑦𝑧 end up in the same state of 𝑀. Since 𝑥𝑧 ∈ 𝐿and 𝑦𝑧 ∉ 𝐿, 𝑀
does not recognize 𝐿. But that’s a contradiction!

6. So 𝐿 must be an irregular language.



Practical Tips

When you’re choosing the set 𝑆, think about what the DFA would “have 
to count”

That is fundamentally why a language is irregular. The set 𝑆 is the way 
we prove it! Whatever we “need to remember” it’s different for every 
element of 𝑆.

If your strings have an “obvious middle” (like between the 0’s and 1’s) 
that’s a good place to start.



Let’s Try another

The set of strings with balanced parentheses is not regular.

What do you want 𝑆 to be? What would you have to count?

The number of unclosed parentheses. 

Want 𝑆 to be a set with infinitely many strings with different numbers of 
unclosed parentheses.

Let 𝑆 = (*



Full outline

1. Suppose for the sake of contradiction that 𝐿 is regular. Then there is some 
DFA 𝑀 that recognizes 𝐿.

2. Let 𝑆 be (*

3. Because the DFA is finite and 𝑆 is infinite, there are two (different) strings 
𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same state when read by 𝑀 Observe that 
𝑥 = (𝑎 for some integer 𝑎, 𝑦 = (b for some integer 𝑏 with 𝑎 ≠ 𝑏.

4. Consider the string 𝑧 [argue exactly one of xz, yz will be in L] 

5. Since 𝑥, 𝑦 both end up in the same state, and we appended the same 𝑧, 
both 𝑥𝑧 and 𝑦𝑧 end up in the same state of 𝑀. Since 𝑥𝑧 ∈ 𝐿and 𝑦𝑧 ∉ 𝐿, 𝑀
does not recognize 𝐿. But that’s a contradiction!

6. So 𝐿 must be an irregular language.



Full outline

1. Suppose for the sake of contradiction that 𝐿 is regular. Then there is some 
DFA 𝑀 that recognizes 𝐿.

2. Let 𝑆 be (*

3. Because the DFA is finite and 𝑆 is infinite, there are two (different) strings 
𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same state when read by 𝑀 Observe that 
𝑥 = (𝑎 for some integer 𝑎, 𝑦 = (b for some integer 𝑏 with 𝑎 ≠ 𝑏.

4. Consider the string 𝑧=)𝑎 𝑥𝑧 is a balanced set of parentheses (since there 
are the same number of each and all the open-parentheses come before the 
close parentheses). But 𝑦𝑧 is not balanced because 𝑎 ≠ 𝑏. 

5. Since 𝑥, 𝑦 both end up in the same state, and we appended the same 𝑧, 
both 𝑥𝑧 and 𝑦𝑧 end up in the same state of 𝑀. Since 𝑥𝑧 ∈ 𝐿and 𝑦𝑧 ∉ 𝐿, 𝑀
does not recognize 𝐿. But that’s a contradiction!

6. So 𝐿 must be an irregular language.



One more, just the key steps

What about {𝑎𝑘𝑏𝑘𝑐𝑘: 𝑘 ≥ 0}?

𝑆 = {𝑎𝑘: 𝑘 ≥ 0} or 𝑆 = {𝑎𝑘𝑏𝑘: 𝑘 ≥ 0} are equally good choices.

Your suffix is 𝑏𝑗𝑐𝑗 for the first and 𝑐𝑗 for the second. 

𝑆 = {𝑎𝑘𝑏: 𝑘 ≥ 0} also works. 𝑧 = 𝑏𝑗−1𝑐𝑗 is your suffix. The proof is a 
little more tedious, but you can make it through.



One Last Fun Fact

On HW8, the extra credit is to use the “pumping lemma” to prove a 
language is irregular.

The method from lecture “always works” – i.e. for every non-regular 
language, you can write a proof like this.

For the pumping lemma that isn’t true – there are some non-regular 
languages that satisfy the pumping lemma, which is why we don’t focus 
on it. 

The final common way to show languages are regular or not regular is 
“closure properties” – operations that (when applied to regular 
languages) always give you another regular language. Or vice versa. 


