Section 05: Solutions

1. GCD

(a) Calculate gcd(100, 50).

Solution:

50

(b) Calculate gcd(17, 31).

Solution:

1

(c) Find the multiplicative inverse of 6 (mod 7).

Solution:

6

(d) Does 49 have an multiplicative inverse (mod 7)?

Solution:

It does not. Intuitively, this is because 49x for any x is going to be 0 mod 7, which means it can never be 1.

2. Extended Euclidean Algorithm

(a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y < 33$.

Solution:

First, we find the gcd:

gcd(33,7) = gcd(7,5)
$$33 = 7 \cdot 4 + 5$$
 (1)
= gcd(5,2) $7 = 5 \cdot 1 + 2$ (2)
= gcd(2,1) $5 = 2 \cdot 2 + 1$ (3)
= gcd(1,0) $2 = 1 \cdot 2 + 0$ (4)
= 1 (5)

Next, we re-arrange equations (1) - (3) by solving for the remainder:

$$1 = 5 - \boxed{2} \bullet 2 \tag{6}$$

$$2 = 7 - \boxed{5} \bullet 1 \tag{7}$$

$$5 = 33 - \boxed{7} \bullet 4 \tag{8}$$

(9)

Now, we backward substitute into the boxed numbers using the equations:

$$1 = 5 - \boxed{2} \bullet 2$$

$$= 5 - (7 - \boxed{5} \bullet 1) \bullet 2$$

$$= 3 \bullet \boxed{5} - 7 \bullet 2$$

$$= 3 \bullet (33 - \boxed{7} \bullet 4) - 7 \bullet 2$$

$$= 33 \bullet 3 + 7 \bullet -14$$

So, $1 = 33 \bullet 3 + \boxed{7} \bullet -14$. Thus, 33 - 14 = 19 is the multiplicative inverse of 7 mod 33.

(b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.

Solution:

If $7y \equiv 1 \pmod{33}$, then

$$2 \cdot 7y \equiv 2 \pmod{33}.$$

So, $z \equiv 2 \times 19 \pmod{33} \equiv 5 \pmod{33}$. This means that the set of solutions is $\{5 + 33k \mid k \in \mathbb{Z}\}$.

3. Euclid's Lemma¹

(a) Show that if an integer p divides the product of two integers a and b, and gcd(p, a) = 1, then p divides b.

Solution:

Suppose that $p \mid ab$ and gcd(p, a) = 1 for integers a, b, and p. By Bezout's theorem, since gcd(p, a) = 1, there exist integers r and s such that

$$rp + sa = 1$$
.

Since $p \mid ab$, by the definition of divides there exists an integer k such that pk = ab. By multiplying both sides of rp + sa = 1 by b we have,

$$rpb + s(ab) = b$$

$$rpb + s(pk) = b$$

$$p(rb + sk) = b$$

Since r, b, s, k are all integers, (rb + sk) is also an integer. By definition we have $p \mid b$.

(b) Show that if a prime p divides ab where a and b are integers, then $p \mid a$ or $p \mid b$. (Hint: Use part (a))

Solution:

¹these proofs aren't much longer than proofs you've seen so far, but it can be a little easier to get stuck – use these as a chance to practice how to get unstuck if you do!

Suppose that $p\mid ab$ for prime number p and integers a,b. There are two cases.

Case 1: gcd(p, a) = 1

In this case, $p \mid b$ by part (a).

Case 2: $gcd(p, a) \neq 1$

In this case, p and a share a common positive factor greater than 1. But since p is prime, its only positive factors are 1 and p, meaning gcd(p, a) = p. This says p is a factor of a, that is, $p \mid a$.

In both cases we've shown that $p \mid a$ or $p \mid b$.