
Section 07: Solutions

1. Structural Induction

(a) Consider the following recursive definition of strings.

Basis Step: "" is a string

Recursive Step: If X is a string and c is a character then append(c,X) is a string.

Recall the following recursive definition of the function len:

len("") = 0

len(append(c,X)) = 1 + len(X)

Now, consider the following recursive definition:

double("") = ""

double(append(c,X)) = append(c, append(c,double(X))).

Prove that for any string X, len(double(X)) = 2len(X).

Solution:

For a string X, let P(X) be “len(double(X)) = 2len(X)”. We prove P(X) for all strings X by structural
induction on X.

Base Case (X = ""): By definition, len(double("")) = len("") = 0 = 2 · 0 = 2len(""), so P("") holds

Inductive Hypothesis: Suppose P(X) holds for some arbitrary string X.

Inductive Step: Goal: Show that P(append(c,X)) holds for any character c.

len(double(append(c,X))) = len(append(c, append(c,double(X)))) [By Definition of double]

= 1 + len(append(c,double(X))) [By Definition of len]

= 1 + 1 + len(double(X)) [By Definition of len]

= 2 + 2len(X) [By IH]

= 2(1 + len(X)) [Algebra]

= 2(len(append(c,X))) [By Definition of len]

This proves P(append(c,X)).

Conclusion: P(X) holds for all strings X by structural induction.

(b) Consider the following definition of a (binary) Tree:

Basis Step: • is a Tree.

Recursive Step: If L is a Tree and R is a Tree then Tree(•, L,R) is a Tree.

The function leaves returns the number of leaves of a Tree. It is defined as follows:

leaves(•) = 1

leaves(Tree(•, L,R)) = leaves(L) + leaves(R)
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Also, recall the definition of size on trees:

size(•) = 1

size(Tree(•, L,R)) = 1 + size(L) + size(R)

Prove that leaves(T ) ≥ size(T )/2 + 1/2 for all Trees T .

Solution:

For a tree T , let P be leaves(T ) ≥ size(T )/2 + 1/2. We prove P for all trees T by structural induction on
T .

Base Case (T = •): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. So, leaves(•) = 1 ≥
1/2 + 1/2 = size(•)/2 + 1/2, so P(•) holds.

Inductive Hypothesis: Suppose P(L) and P(R) hold for some arbitrary trees L,R.

Inductive Step: Goal: Show that P(Tree(•, L,R)) holds.

leaves(Tree(•, L,R)) = leaves(L) + leaves(R) [By Definition of leaves]
≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) [By IH]

= (1/2 + size(L)/2 + size(R)/2) + 1/2 [By Algebra]

=
1 + size(L) + size(R)

2
+ 1/2 [By Algebra]

= size(T )/2 + 1/2 [By Definition of size]

This proves P(Tree(•, L,R)).

Conclusion: Thus, P(T ) holds for all trees T by structural induction.

(c) Prove the previous claim using strong induction. Define P (n) as “all trees T of size n satisfy leaves(T ) ≥
size(T )/2 + 1/2”. You may use the following facts:

• For any tree T we have size(T ) ≥ 1.

• For any tree T , size(T ) = 1 if and only if T = •.

If we wanted to prove these claims, we could do so by structural induction.

Note, in the inductive step you should start by letting T be an arbitrary tree of size k + 1.

Solution:

Let P (n) be “all trees T of size n satisfy leaves(T ) ≥ size(T )/2 + 1/2”. We show P (n) for all integers
n ≥ 1 by strong induction on n.

Base Case: Let T be an arbitrary tree of size 1. The only tree with size 1 is •, so T = •. By definition,
leaves(T ) = leaves(•) = 1 and thus size(T ) = 1 = 1/2 + 1/2 = size(T )/2 + 1/2. This shows the
base case holds.

Inductive Hypothesis: Suppose that P (j) holds for all integers j = 1, 2, . . . , k for some arbitrary integer
k ≥ 1.

Inductive Step: Let T be an arbitrary tree of size k + 1. Since k + 1 > 1, we must have T 6= •. It follows
from the definition of a tree that T = Tree(•, L,R) for some trees L and R. By definition, we have
size(T ) = 1+ size(L)+ size(R). Since sizes are non-negative, this equation shows size(T ) > size(L)
and size(T ) > size(R) meaning we can apply the inductive hypothesis. This says that leaves(L) ≥
size(L)/2 + 1/2 and leaves(R) ≥ size(R)/2 + 1/2.
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We have,

leaves(T ) = leaves(Tree(•, L,R))

= leaves(L) + leaves(R) [By Definition of leaves]
≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) [By IH]

= (1/2 + size(L)/2 + size(R)/2) + 1/2 [By Algebra]

=
1 + size(L) + size(R)

2
+ 1/2 [By Algebra]

= size(T )/2 + 1/2 [By Definition of size]

This shows P (k + 1).

Conclusion: P (n) holds for all integers n ≥ 1 by the principle of strong induction.

Note, this proves the claim for all trees because every tree T has some size s ≥ 1. Then P (s) says that all
trees of size s satisfy the claim, including T .

2. Midterm Review: Translation

Let your domain of discourse be all coffee drinks. You should use the following predicates:

• soy(x) is true iff x contains soy milk.

• whole(x) is true iff x contains whole milk.

• sugar(x) is true iff x contains sugar

• decaf(x) is true iff x is not caffeinated.

• vegan(x) is true iff x is vegan.

• RobbieLikes(x) is true iff Robbie likes the drink x.

Translate each of the following statements into predicate logic. You may use quantifiers, the predicates above, and
usual math connectors like = and 6=.

(a) Coffee drinks with whole milk are not vegan. Solution:

∀x(whole(x) → ¬ vegan(x)).

(b) Robbie only likes one coffee drink, and that drink is not vegan. Solution:

∃x∀y(RobbieLikes(x) ∧ ¬ Vegan(x) ∧ [RobbieLikes(y) → x = y])

OR ∃x(RobbieLikes(x) ∧ ¬ Vegan(x) ∧ ∀y[RobbieLikes(y) → x = y])

(c) There is a drink that has both sugar and soy milk. Solution:

∃x(sugar(x) ∧ soy(x))

Translate the following symbolic logic statement into a (natural) English sentence. Take advantage of domain
restriction.

∀x([decaf(x) ∧ RobbieLikes(x)] → sugar(x))
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Solution:

Every decaf drink that Robbie likes has sugar.

Statements like “For every decaf drink, if Robbie likes it then it has sugar” are equivalent, but only partially take
advantage of domain restriction.

3. Midterm Review: Number Theory

Let p be a prime number at least 3, and let x be an integer such that x2%p = 1.

(a) Show that if an integer y satisfies y ≡ 1 (mod p), then y2 ≡ 1 (mod p). (this proof will be short!)
(Try to do this without using the theorem ”Raising Congruences To A Power”)
Solution:

Let y be an arbitrary integer and suppose y ≡ 1 (mod p). We can multiply congruences, so multiplying
this congruence by itself we get y2 ≡ 12 (mod p). Since y is arbitrary, the claim holds.

(b) Repeat part (a), but don’t use any theorems from the Number Theory Reference Sheet. That is, show the claim
directly from the definitions.

Solution:

Suppose x ≡ 1 (mod p). By the definition of Congruences, p | (x − 1). Therefore, by the definition of
divides, there exists an integer k such that

pk = (x− 1)

By multiplying both sides of pk = (x - 1) by (x + 1) and re-arranging the equation, we have

pk(x+ 1) = (x− 1)(x+ 1)

p(k(x+ 1)) = (x− 1)(x+ 1)

Since (x− 1)(x+ 1) = x2 − 1, by replacing (x− 1)(x+ 1) with x2 − 1, we have

p(k(x+ 1)) = x2 − 1

Note that since k and x are integers, (k (x + 1)) is also an integer. Therefore, by the definition of divides
p | x2 − 1.
Hence, by the definition of Congruences, x2 ≡ 1 (mod p).

(c) From part (a), we can see that x%p can equal 1. Show that for any integer x, if x2 ≡ 1 (mod p), then x ≡ 1
(mod p) or x ≡ −1 (mod p). That is, show that the only value x%p can take other than 1 is p− 1.
Hint: Suppose you have an x such that x2 ≡ 1 (mod p) and use the fact that x2 − 1 = (x− 1)(x+ 1)
Hint: You may the following theorem without proof: if p is prime and p | (ab) then p | a or p | b.

Solution:

Suppose x2 ≡ 1 (mod p). By the definition of Congruences,

p | x2 − 1
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Since (x− 1)(x+ 1) = x2 − 1, by replacing x2 − 1 with (x− 1)(x+ 1), we have

p | (x− 1)(x+ 1)

Note that for an integer p if p is a prime number and p | (ab), then p | a or p | b. In this case, since p is a
prime number, by applying the rule, we have p | (x− 1) or p | (x+ 1).
Therefore, by the definition of Congruences, we have x ≡ 1 (mod p) or x ≡ −1 (mod p).

4. Midterm Review: Induction

For any n ∈ N, define Sn to be the sum of the squares of the first n positive integers, or

Sn = 12 + 22 + · · ·+ n2.

Prove that for all n ∈ N, Sn = 1
6n(n+ 1)(2n+ 1).

Solution:

Let P(n) be the statement “Sn = 1
6n(n + 1)(2n + 1)” defined for all n ∈ N. We prove that P(n) is true for all

n ∈ N by induction on n.

Base Case: When n = 0, we know the sum of the squares of the first n positive integers is the sum of no terms,
so we have a sum of 0. Thus, S0 = 0. Since 1

6 (0)(0 + 1)((2)(0) + 1) = 0, we know that P(0) is true.

Inductive Hypothesis: Suppose that P(k) is true for some arbitrary k ∈ N.

Inductive Step: Examining Sk+1, we see that

Sk+1 = 12 + 22 + · · ·+ k2 + (k + 1)2 = Sk + (k + 1)2.

By the inductive hypothesis, we know that Sk = 1
6k(k + 1)(2k + 1). Therefore, we can substitute and

rewrite the expression as follows:

Sk+1 = Sk + (k + 1)2

=
1

6
k(k + 1)(2k + 1) + (k + 1)2

= (k + 1)

(
1

6
k(2k + 1) + (k + 1)

)
=

1

6
(k + 1) (k(2k + 1) + 6(k + 1))

=
1

6
(k + 1)

(
2k2 + 7k + 6

)
=

1

6
(k + 1)(k + 2)(2k + 3)

=
1

6
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

Thus, we can conclude that P(k + 1) is true.

Conclusion: P (n) for all integers n ≥ 0 by the principle of induction.
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