Section 08: Solutions

1. Cantelli's Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2) \text { for } n \geq 2
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n. That is, construct a formula for $f(n)$ and prove its correctness.

Solution:

Let $P(n)$ be " $f(n)=n$ ". We prove that $P(n)$ is true for all $n \in \mathbb{N}$ by strong induction on n.
Base Cases $(n=0, n=1): f(0)=0$ and $f(1)=1$ by definition.
Inductive Hypothesis: Assume that $P(0) \wedge P(1) \wedge \ldots P(k)$ hold for some arbitrary $k \geq 1$.
Inductive Step: We show $P(k+1)$:

$$
\begin{aligned}
f(k+1) & =2 f(k)-f(k-1) & & {[\text { Definition of } f] } \\
& =2(k)-(k-1) & & \text { [Induction Hypothesis] } \\
& =k+1 & & {[\text { Algebra] }}
\end{aligned}
$$

Conclusion: $P(n)$ is true for all $n \in \mathbb{N}$ by principle of strong induction.

2. Walk the Dawgs

Suppose a dog walker takes care of $n \geq 12$ dogs. The dog walker is not a strong person, and will walk dogs in groups of 4 or 5 at a time (every dog gets walked exactly once). Prove the dog walker can always split the n dogs into groups of 4 or 5 .

Solution:

Let $P(n)$ be "a group with n dogs can be split into groups of 4 or 5 dogs." We will prove $P(n)$ for all natural numbers $n \geq 12$ by strong induction.

Base Cases $n=12,13,14$, or 15: $12=4+4+4,13=4+4+5,14=4+5+5,15=5+5+5$. So $P(12)$, $P(13), P(14)$, and $P(15)$ hold.
Inductive Hypothesis: Assume that $P(12), \ldots, P(k)$ hold for some arbitrary $k \geq 15$.
Inductive Step: Goal: Show $k+1$ dogs can be split into groups of size 4 or 5 .
We first form one group of 4 dogs. Then we can divide the remaining $k-3$ dogs into groups of 4 or 5 by the assumption $P(k-3)$. (Note that $k \geq 15$ and so $k-3 \geq 12$; thus, $P(k-3)$ is among our assumptions $P(12), \ldots, P(k)$. .

Conclusion: $P(n)$ holds for all integers $n \geq 12$ by by principle of strong induction.

3. Reversing a Binary Tree

Consider the following definition of a (binary) Tree.
Basis Step Nil is a Tree.
Recursive Step If L is a Tree, R is a Tree, and x is an integer, then $\operatorname{Tree}(x, L, R)$ is a Tree.
The sum function returns the sum of all elements in a Tree.

$$
\begin{array}{ll}
\operatorname{sum}(\operatorname{Nil}) & =0 \\
\operatorname{sum}(\operatorname{Tree}(x, L, R)) & =x+\operatorname{sum}(L)+\operatorname{sum}(R)
\end{array}
$$

The following recursively defined function produces the mirror image of a Tree.

$$
\begin{array}{ll}
\text { reverse }(\operatorname{Nil}) & =\operatorname{Nil} \\
\operatorname{reverse}(\operatorname{Tree}(x, L, R)) & =\operatorname{Tree}(x, \operatorname{reverse}(R), \operatorname{reverse}(L))
\end{array}
$$

Show that, for all Trees T that

$$
\operatorname{sum}(T)=\operatorname{sum}(\operatorname{reverse}(T))
$$

Solution:

For a Tree T, let $P(T)$ be "sum $(T)=\operatorname{sum}($ reverse $(T))$ ". We show $P(T)$ for all Trees T by structural induction.
Base Case: By definition we have reverse $(\mathrm{Nil})=$ Nil. Applying sum to both sides we get sum $(\mathrm{Nil})=$ sum(reverse(Nil)), which is exactly $P(\mathrm{Nil})$, so the base case holds.
Inductive Hypothesis: Suppose $P(L)$ and $P(R)$ hold for some arbitrary Trees L and R.
Inductive Step: Let x be an arbitrary integer. Goal: Show $P(\operatorname{Tree}(x, L, R))$ holds.
We have,

$$
\begin{aligned}
\operatorname{sum}(\operatorname{reverse}(\operatorname{Tree}(x, L, R))) & =\operatorname{sum}(\operatorname{Tree}(x, \operatorname{reverse}(R), \operatorname{reverse}(L))) & & \text { [Definition of reverse] } \\
& =x+\operatorname{sum}(\operatorname{reverse}(L))+\operatorname{sum}(\operatorname{reverse}(L)) & & \text { [Definition of sum }] \\
& =x+\operatorname{sum}(R)+\operatorname{sum}(L) & & \text { [Inductive Hypothesis] } \\
& =x+\operatorname{sum}(L)+\operatorname{sum}(R) & & \text { [Commutativity] } \\
& =\operatorname{sum}(\operatorname{Tree}(x, L, R)) & & \text { [Definition of sum }]
\end{aligned}
$$

This shows $P(\operatorname{Tree}(x, L, R))$.
Conclusion: Therefore, $P(T)$ holds for all Trees T by structural induction.

4. Bernoulli's Inequality

Show that for any integer $n \geq 0$ and real number $x \geq-1$ that $(1+x)^{n} \geq 1+n x$.

Solution:

Let $P(n)$ be "for any real number $x \geq-1$ it holds that $(1+x)^{n} \geq 1+n x$." We show $P(n)$ for all integer $n \geq 0$ by induction on n.
Base Case: For any real number $x \geq-1$ we have $(1+x)^{0}=1=1+0(x)$ (Note, we assume $0^{0}=1$ here). Thus, $P(0)$ holds.
Inductive Hypothesis: Suppose $P(k)$ holds for some arbitrary integer $k \geq 0$.

Industive Step: Goal: For any real number $x \geq-1,(1+x)^{k+1} \geq 1+(k+1) x$.
Let x be an arbitrary real number such that $x \geq-1$. Then,

$$
\begin{aligned}
(1+x)^{k+1} & =(1+x)(1+x)^{k} & & \\
& \geq(1+x)(1+k x) & & {[\text { IH, and since } 1+x \geq 0] } \\
& =1+k x+x+k x^{2} & & {[\text { Distribute terms }] } \\
& =1+(k+1) x+k x^{2} & & {[\text { Factor out } x] } \\
& \geq 1+(k+1) x & & {\left[\text { Since } k x^{2} \geq 0\right] }
\end{aligned}
$$

Thus, $(1+x)^{k+1} \geq 1+(k+1) x$, so $P(k+1)$ holds.
Conclusion: $P(n)$ holds for all integers $n \geq 0$ by the principle of induction.

5. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

Solution:

$$
0 \cup\left((1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)(0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)^{*}\right)
$$

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

Solution:

$$
0 \cup\left((1 \cup 2)(0 \cup 1 \cup 2)^{*} 0\right)
$$

(c) Write a regular expression that matches all binary strings that contain the substring " 111 ", but not the substring "000".

Solution:

$$
\left(01 \cup 001 \cup 1^{*}\right)^{*}(0 \cup 00 \cup \varepsilon) 111\left(01 \cup 001 \cup 1^{*}\right)^{*}(0 \cup 00 \cup \varepsilon)
$$

