CSE 311: Foundations of Computing

Lecture 16: Induction & Strong Induction
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“And another thing . . . | want you to be more assertive!
I'm tired of everyone calling you Alexander the
Prefty-Good!”



Last Time: New Inference Rule

Domain: Natural Numbers

P(0) Vk(P(k)— P(k+1))
. Vn P(n)




Last Time: Induction Is A Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) P2 P@3) PM#)  P(®5)

First, we have P(0).
Since P(n) — P(n+1) for all n, we have P(0) — P(1).

Since P(0) is true and P(0) — P(1), by Modus Ponens, P(1) is true.
Since P(n) — P(n+1) for all n, we have P(1) — P(2).

Since P(1) is true and P(1) — P(2), by Modus Ponens, P(2) is true.



Last Time: Translating to an English Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

Base Case

1. Prove P(0)

2. Let k be an arbitrary integer >0 Inductive
3.1. Suppose that P(k) is true | Hypothesis
3.2. ... Inductive
3.3. Prove P(k+1) is true Step

3. P(k) > P(k+1) Direct Proof Rule

4. Yk (P(k) > P(k+1)) Intro V: 2, 3

5. Vn P(n) Induction: 1, 4



Last Time: Inductive Proofs In 5 Easy Steps

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = 0 by induction.”

2. “Base Case:” Prove P(0)
3. “Inductive Hypothesis:
Assume P (k) is true for some arbitrary integer k > 0”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1))
5. “Conclusion: P(n) is true for all integers n > 0”



Prove 1 +2 +3 4+ ..+ n=nn+1)/2




Prove 1 +2 +3 4+ ..+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+1)/2". We will show P(n) is
true for all natural numbers by induction.

Summation Notation
Poi=04+1+2+3+ ..+n




Prove 1 +2 +3 4+ ..+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+1)/2". We will show P(n) is
true for all natural numbers by induction.

2. Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Summation Notation
Poi=04+1+2+3+ ..+n




Prove 1 + 2+ 3 4+ ... + n

nn+1)/2

1.

2.
3.

Let P(n)be “0+1+2+..+n=n(n+1)/2"”. We will show P(n) is
true for all natural numbers by induction.

Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose 1 + 2 + ...+ k F k(k+1)/2

“some” or “an”
not any!



Prove 1 + 2+ 3 4+ ... + n

nn+1)/2

1.

N

Let P(n)be “0+1+2+..+n=n(n+1)/2"”. We will show P(n) is
true for all natural numbers by induction.
Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose 1 + 2 + ...+ k = k(k+1)/2

Induction Step:

Goal: Show P(k+1), i.e. show 1 + 2 + ...+ k+ (k+1) = (k+1)(k+2)/2




Prove 1 + 2+ 3 4+ ... + n

nn+1)/2

1.

N

Let P(n)be “0+1+2+..+n=n(n+1)/2"”. We will show P(n) is
true for all natural numbers by induction.
Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose 1 + 2 + ...+ k = k(k+1)/2

Induction Step:
1+2+ ... +k+(k+t1)=(1+2+..+k)+ (k+1)
= k(k+1)/2 + (k+1) by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2
So, we have shown 1 + 2 + ... + k + (k+1) = (k+1)(k+2)/2,
which is exactly P(k+1).

5. Thus P(n) is true for all n €N, by induction.



Induction: Changing the start line

* What if we want to prove that P(n) is true
for all integers n = b for some integer b?

 Define predicate Q(k) = P(k + b) for all k.
—Then VnQ(n) =vn=b P(n)

* Ordinary induction for Q:
— Prove Q(0) = P(b)

— Prove
vk (Q(k) — Q(k+ 1)) =Vk > b(P(k) — P(k + 1))



Inductive Proofs In 5 Easy Steps

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:
Assume P (k) is true for an arbitrary integer k > b”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1))
5. “Conclusion: P(n) is true for all integers n > b”



Prove 3" > n? + 3 foralln > 2




Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n2+3”. We will show P(n) is true for all
integers n > 2 by induction.



Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n2+3”. We will show P(n) is true for all
integers n > 2 by induction.

2. Base Case (n=2): 32=9>7=4+3=2%+3s0 P(2)is true.



Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n2+3”. We will show P(n) is true for all
integers n > 2 by induction.

2. Base Case (n=2): 32=9>7=4+3=2%+3s0 P(2)is true.

3. Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3k> k2+3.



Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:
Goal: Show P(k+1), i.e. show 3k1> (k+1)2+3




Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:
Goal: Show P(k+1), i.e. show 3k*1> (k+1)2+3=k2+2k+4




Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:
Goal: Show P(k+1), i.e. show 3k*1> (k+1)2+3=k2+2k+4
Jk+l = 3(3k)

> 3(k?+3) by the IH

= 3k?+9

= k2+2k?+9

> k2+2k+4 = (k+1)?+3 since k > 1.
Therefore P(k+1) is true.




Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:
Goal: Show P(k+1), i.e. show 3k*1> (k+1)2+3=k2+2k+4
Jk+l = 3(3k)
> 3(k?+3) by the IH
= k2+2k?+9
> k2+2k+4 = (k+1)%+3 since k > 1.
Therefore P(k+1) is true.

5. Thus P(n) is true for all integers n > 2, by induction.



Checkerboard Tiling

* Prove that a 2" x 2" checkerboard with one square
removed can be tiled with:




Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.




Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.

2. Base Case: n=1




Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.

2. Base Case: n=1

3. Inductive Hypothesis: Assume P(k) for some
arbitrary integer k=1




Checkerboard Tiling

1.

Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.

Base Case: n=1

Inductive Hypothesis: Assume P(k) for some
arbitrary integer k=1

Inductive Step: Prove P(k+1)

Apply IH to
each quadrant
| then fill with
extra tile.




. 1 n
Exercise: prove Z?=1j(j+1) =— foralln > 1




1
=— foralln=>1
j(j+1) n+1

1. LetP(n)be Y% 11/j(G+1) =n/(n+1)". We will show P(n)
is true for all integers n > 1 by induction.

2. Base Case (n=1):1/1(2)=1/2 =1/(1+1) so P(1) is true.

3. Inductive Hypothesis: Suppose, for an arbitrary integer k > 1,
we have Y5_, 1/j( + 1) = k/(k + 1).

4. Inductive Step:

Goal: Show P(k+1) ie. Y 1/jG+ 1) = (k+1)/(k +2)

k+1 _ 1
2j= 1(1+1) ZJ 11(1+1>+(k+1><k+2)

k n 1 _ k(e+2)+1 _ (k+1)* k+1
k+1  (k+1)(k+2)  (k+1)(k+2) (k+1)(k+2) k+2

Therefore P(k+1) is true.
5. Thus P(n) is true for all integers n > 1, by induction.

Exercise: prove " i=1




Recall: Induction Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) P2 P@3) PMA)  P(5)



Recall: Induction Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)-P(5)

TN T N TN TN N
P(0) P() P2 PGB P@H  PO)

We made it harder than we needed to ...
When we proved P(2) we knew BOTH P(0) and P(1)
When we proved P(3) we knew P(0) and P(1) and P(2)
When we proved P(4) we knew P(0), P(1), P(2),P(3)
etc.

That’s the essence of the idea of Strong Induction.



Strong Induction

P(0)
vk ((P(O) AP(1)AP(2) A--AP(K)) > P(k + 1))

. Vn P(n)



Strong Induction

P(0)
vk ((P(O) AP(1)AP(2) A--AP(K)) > P(k + 1))

. Vn P(n)

Strong induction for P follows from ordinary induction for
where

Q(k) =PO)AP()AP2)AN---ANP(k)

Note that Q(0) = P(0)and Q(k+1) =Q(k) AP(k+ 1)
and Yn Q(n) = Vn P(n)



Inductive Proofs In 5 Easy Steps

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:
Assume that for some arbitrary integer k = b,
P(k) is true”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1))

5. “Conclusion: P(n) is true for all integers n > b”



Strong Inductive Proofs In 5 Easy Steps

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by strong induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:
Assume that for some arbitrary integer k = b,
P(j) is true for every integer j from b to k”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using LH. (that P(b), ..., P(k) are true)
and point out where you are using it.
(Don’t assume P(k + 1) 1)

5. “Conclusion: P(n) is true for all integers n = b”



Recall: Fundamental Theorem of Arithmetic

Every integer > 1 has a unique prime
factorization

48 = 2¢222+3

591 =3« 197

45,523 = 45,523

321,950 =25+5°47 137
1,234,567,890 =233+ 5+ 3,607 « 3,803

We use strong induction to prove that a factorization into
primes exists, but not that it is unique.



Every integer = 2 is a product of (one or more) primes.




Every integer = 2 is a product of (one or more) primes.

1. Let P(n) be “nis a product of primes”. We will show that P(n) is true
for all integers n = 2 by strong induction.



Every integer = 2 is a product of (one or more) primes.

1. Let P(n) be “nis a product of primes”. We will show that P(n) is true
for all integers n = 2 by strong induction.

2. Base Case (n=2): 2is prime, so it is a product of (one) prime.
Therefore P(2) is true.



Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of primes”. We will show that P(n) is true

for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k



Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of primes”. We will show that P(n) is true
for all integers n = 2 by strong induction.
Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,

P(j) is true for every integer j between 2 and k
Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes




Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of primes”. We will show that P(n) is true
for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes
Case: k+1 is prime: Then by definition k+1 is a product of primes




Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of primes”. We will show that P(n) is true

for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime: Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b

where 2 <a, b <k.




Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of primes”. We will show that P(n) is true

for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime: Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b
where 2 < a, b < k. By our IH, P(a) and P(b) are true so we have

a=pipz - prand b=qiq; - qs
for some primes py,p,,..., P, d1,92,--+) Q-
Thus, k+1 =ab =p;p, :*- p,919, *** q; which is a product of primes.
Since k > 2, one of these cases must happen and so P(k+1) is true.




Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of primes”. We will show that P(n) is true

for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime: Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b
where 2 < a, b < k. By our IH, P(a) and P(b) are true so we have

a=pipz - prand b=qiq; - qs
for some primes py,p,,..., P, d1,92,--+) Q-
Thus, k+1 =ab =p;p, :*- p,919, *** q; which is a product of primes.
Since k > 2, one of these cases must happen and so P(k+1) is true.

5. Thus P(n) is true for all integers n = 2, by strong induction.



Strong Induction is particularly useful when...

...we need to analyze methods that on input kK make
a recursive call for an input different from k — 1.

e.g.: Recursive Modular Exponentiation:

— For exponent k > 0 it made a recursive call with
exponentj = k/2 when k was evenorj =k — 1 when k
was odd.



Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 0) {
return 1;

} else if ((k % 2) == 0) {
long temp = FastModExp(a,k/2,modulus);
return (temp * temp) % modulus;

} else {

long temp = FastModExp(a,k-1,modulus);
return (a * temp) % modulus;

a*’mod m = (a’ mod m)zmod m
a**Imodm = ((a modm) - (a¥ mod m)) mod m



Strong Induction is particularly useful when...

...we need to analyze methods that on input kK make
a recursive call for an input different from k — 1.

e.g.: Recursive Modular Exponentiation:

— For exponent k > 0 it made a recursive call with

exponentj = k/2 when k was evenorj =k — 1 when k
was odd.

We won’t analyze this particular method by strong
induction, but we could.

However, we will use strong induction to analyze
other functions with recursive definitions.



