CSE 311: Foundations of Computing

Lecture 2: More Logic, Equivalence \& Digital Circuits

Recap from last class

- A propositional logic formula is formed from propositional variables q, r, s, \ldots, constants T, F , logical operations $\neg, \wedge, \mathrm{V}, \oplus, \rightarrow, \leftrightarrow$ and brackets (..)
- Example: $(q \vee(\neg r \wedge s)) \wedge \neg s$

Negation (not)	$\neg q$
Conjunction (and)	$q \wedge r$
Disjunction (or)	$q \vee r$
Exclusive Or	$q \oplus r$
Implication	$q \longrightarrow r$
Biconditional	$q \leftrightarrow r$

Implication

"If it's raining, then I have my umbrella"

It's useful to think of implications as promises. That is "Did I lie?"

\boldsymbol{q}	\boldsymbol{r}	$\boldsymbol{q} \rightarrow \boldsymbol{r}$
\mathbf{T}	T	\mathbf{T}
T	F	F
F	T	T
F	F	T

	It's raining	It's not raining
I have my umbrella		
I do not have my umbrella		

Implication

"If it's raining, then I have my umbrella"

It's useful to think of implications as promises. That is "Did I lie?"

\boldsymbol{q}	\boldsymbol{r}	$\boldsymbol{q} \rightarrow \boldsymbol{r}$
T	T	\mathbf{T}
T	F	F
F	T	T
F	F	T

	It's raining	It's not raining
I have my umbrella	No	No
I do not have my umbrella	Yes	No

The only lie is when:
(a) It's raining AND
(b) I don't have my umbrella

Implication

"If it's raining, then I have my umbrella"

Are these true?

\boldsymbol{q}	\boldsymbol{r}	$\boldsymbol{q} \rightarrow \boldsymbol{r}$
T	T	T
T	F	F
F	T	T
F	F	T

$2+2=4 \rightarrow$ earth is a planet
$2+2=5 \rightarrow 26$ is prime

Implication

"If it's raining, then I have my umbrella"

Are these true?

\boldsymbol{q}	\boldsymbol{r}	$\mathbf{q} \rightarrow \boldsymbol{r}$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	F	F
F	T	T
F	F	T

$2+2=4 \rightarrow$ earth is a planet
The fact that these are unrelated doesn't make the statement false! " $2+2=$ 4 " is true; "earth is a planet" is true. $\mathrm{T} \rightarrow \mathrm{T}$ is true. So, the statement is true.
$2+2=5 \rightarrow 26$ is prime
Again, these statements may or may not be related. " $2+2=5$ " is false; so, the implication is true. (Whether 26 is prime or not is irrelevant).

Implication is not a causal relationship!

$q \rightarrow r$

(1) "I have collected all 151 Pokémon if I am a Pokémon master"
(2) "I have collected all 151 Pokémon only if I am a Pokémon master"

These sentences are implications in opposite directions:
(1) "I have collected all 151 Pokémon if I am a Pokémon master"
(2) "I have collected all 151 Pokémon only if I am a Pokémon master"

These sentences are implications in opposite directions:
(1) "Pokémon masters have all 151 Pokémon"
(2) "People who have 151 Pokémon are Pokémon masters"

So, the implications are:
(1) If I am a Pokémon master, then I have collected all 151 Pokémon.
(2) If I have collected all 151 Pokémon, then I am a Pokémon master.

$q \rightarrow r$

Implication:

$-q$ implies r

- whenever q is true r must be true

q	r	$q \rightarrow r$
T	T	T
T	F	F
F	T	T
F	F	T

- if q then r
$-r$ if q
$-q$ is sufficient for r
$-q$ only if r
$-r$ is necessary for q

Biconditional: $q \leftrightarrow r$

- q iff r
- q is equivalent to r
- q implies r and r implies q
- q is necessary and sufficient for r

Biconditional: $q \leftrightarrow r$

- q iff r
- q is equivalent to r
- q implies r and r implies q
- q is necessary and sufficient for r

q	r	$q \leftrightarrow r$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}

Back to Garfield...

q "Garfield has black stripes"
 r "Garfield is an orange cat"
 s "Garfield likes lasagna"

"Garfield has black stripes if he is an orange cat and likes lasagna, and he is an orange cat or does not like lasagna"

$$
\begin{aligned}
& (q \text { if }(r \text { and } s)) \text { and }(r \text { or }(\operatorname{not} s)) \\
& \quad(q \text { "if" }(r \wedge s)) \wedge(r \vee \neg s)
\end{aligned}
$$

Back to Garfield...

q "Garfield has black stripes"
 r "Garfield is an orange cat"
 s "Garfield likes lasagna"

"Garfield has black stripes if he is an orange cat and likes lasagna, and he is an orange cat or does not like lasagna"

$$
\begin{aligned}
& (q \text { if }(r \text { and } s)) \text { and }(r \text { or }(\text { not } s)) \\
& (q \text { "if" }(r \wedge s)) \wedge(r \vee \neg s) \\
& ((r \wedge s) \longrightarrow q) \wedge(r \vee \neg s)
\end{aligned}
$$

Analyzing the Garfield Sentence with a Truth Table

\boldsymbol{q}	\boldsymbol{r}	\boldsymbol{s}	$\neg \boldsymbol{s}$	$\boldsymbol{r} \vee \neg \boldsymbol{s}$	$\boldsymbol{r} \wedge \boldsymbol{s}$	$(\boldsymbol{r} \wedge \boldsymbol{s}) \rightarrow \boldsymbol{q}$	$((\boldsymbol{r} \wedge \boldsymbol{s}) \rightarrow \boldsymbol{q}) \wedge(\boldsymbol{r} \vee \neg \boldsymbol{s})$
F	F	F					
F	F	T					
F	T	F					
F	T	T					
T	F	F					
T	F	T					
T	T	F					
T	T	T					

Analyzing the Garfield Sentence with a Truth Table

\boldsymbol{q}	\boldsymbol{r}	\boldsymbol{s}	$\neg \boldsymbol{s}$	$\boldsymbol{r} \vee \neg \boldsymbol{s}$	$\boldsymbol{r} \wedge \boldsymbol{s}$	$(\boldsymbol{r} \wedge \boldsymbol{s}) \rightarrow \boldsymbol{q}$	$((\boldsymbol{r} \wedge \boldsymbol{s}) \rightarrow \boldsymbol{q}) \wedge(\boldsymbol{r} \vee \neg \boldsymbol{s})$
F	F	F	T	T	F	T	T
F	F	T	F	F	F	T	F
F	T	F	T	T	F	T	T
F	T	T	F	T	T	F	F
T	F	F	T	T	F	T	T
T	F	T	F	F	F	T	F
T	T	F	T	T	F	T	T
T	T	T	F	T	T	T	T

Converse, Contrapositive

Implication:

$$
q \rightarrow r
$$

Converse:

$$
r \rightarrow q
$$

Contrapositive:

$$
\neg r \rightarrow \neg q
$$

Inverse:
$\neg q \rightarrow \neg r$

Consider
$q: x$ is divisible by 2
$r: x$ is divisible by 4

$q \rightarrow r$	
$r \rightarrow q$	
$\neg r \rightarrow \neg q$	
$\neg q \rightarrow \neg r$	

Converse, Contrapositive

Implication:

$$
q \rightarrow r
$$

Converse:

$$
r \rightarrow q
$$

Contrapositive:

$$
\neg r \rightarrow \neg q
$$

Inverse:

$$
\neg \boldsymbol{q} \rightarrow \neg r
$$

Consider

 $q: x$ is divisible by 2 r : x is divisible by 4| $q \rightarrow r$ | |
| :---: | :---: |
| $r \rightarrow q$ | |
| $\neg r \rightarrow \neg q$ | |
| $\neg q \rightarrow \neg r$ | |

	Divisible By 2	Not Divisible By 2
Divisible By 4		
Not Divisible By 4		

Converse, Contrapositive

Implication:

$$
q \rightarrow r
$$

Converse:

$$
r \rightarrow q
$$

Contrapositive:

$$
\neg r \rightarrow \neg q
$$

Inverse:

$$
\neg \boldsymbol{q} \rightarrow \neg r
$$

Consider

 $q: x$ is divisible by 2 $r: x$ is divisible by 4| $q \rightarrow r$ | |
| :---: | :--- |
| $r \rightarrow q$ | |
| $\neg r \rightarrow \neg q$ | |
| $\neg q \rightarrow \neg r$ | |

	Divisible By 2	Not Divisible By 2
Divisible By 4	$4,8,12, \ldots$	Impossible
Not Divisible By 4	$2,6,10, \ldots$	$1,3,5, \ldots$

Converse, Contrapositive

Implication:

$$
q \rightarrow r
$$

Converse:

$$
r \rightarrow q
$$

Contrapositive:

$$
\neg r \rightarrow \neg q
$$

Inverse:
$\neg q \rightarrow \neg r$

How do these relate to each other?

\boldsymbol{q}	\boldsymbol{r}	$\boldsymbol{q} \rightarrow \boldsymbol{r}$	$\boldsymbol{r} \rightarrow \boldsymbol{q}$	$\neg \boldsymbol{q}$	$\neg \boldsymbol{r}$	$\neg \boldsymbol{q} \rightarrow \neg \boldsymbol{r}$	$\neg \boldsymbol{r} \rightarrow \neg \boldsymbol{q}$
\mathbf{T}	\mathbf{T}						
\mathbf{T}	\mathbf{F}						
F	\mathbf{T}						
F	F						

Converse, Contrapositive

Implication:
$q \rightarrow r$

Converse:

$$
r \rightarrow q
$$

Contrapositive:

$$
\neg r \rightarrow \neg q
$$

Inverse:
$\neg q \rightarrow \neg r$

An implication and it's contrapositive have the same truth value!

\boldsymbol{q}	\boldsymbol{r}	$\boldsymbol{q} \rightarrow \boldsymbol{r}$	$\boldsymbol{r} \rightarrow \boldsymbol{q}$	$\neg \boldsymbol{q}$	$\neg \boldsymbol{r}$	$\neg \boldsymbol{q} \rightarrow \neg \boldsymbol{r}$	$\neg \boldsymbol{r} \rightarrow \neg \boldsymbol{q}$
T	T	T	T	F	F	T	T
T	F	F	T	F	T	T	F
F	T	T	F	T	F	F	T
F	F	T	T	T	T	T	T

Tautologies!

Terminology: A compound proposition is a...

- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false
$q \vee \neg \boldsymbol{q}$
$\boldsymbol{q} \oplus \boldsymbol{q}$
$(q \rightarrow r) \wedge q$

Tautologies!

Terminology: A compound proposition is a...

- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false
$\boldsymbol{q} \vee \neg \boldsymbol{q}$
This is a tautology. It's called the "law of the excluded middle".
If q is true, then $q \vee \neg \boldsymbol{q}$ is true. If q is false, then $\boldsymbol{q} \vee \neg \boldsymbol{q}$ is true.
$\boldsymbol{q} \oplus \boldsymbol{q}$
This is a contradiction. It's always false no matter what truth value q takes on.
$(q \rightarrow r) \wedge q$
This is a contingency. When $q=T, r=T,(T \rightarrow T) \wedge T$ is true.
When $q=T, r=F,(T \rightarrow F) \wedge T$ is false.

Logical Equivalence

$$
\begin{aligned}
A= & B \text { means } A \text { and } B \text { are identical "strings": } \\
& -q \wedge r=q \wedge r \\
& -q \wedge r \neq r \wedge q
\end{aligned}
$$

Logical Equivalence

$A=B$ means A and B are identical "strings":
$-q \wedge r=\boldsymbol{q} \wedge r$
These are equal, because they are character-for-character identical.
$-q \wedge r \neq r \wedge q$
These are NOT equal, because they are different sequences of characters. They "mean" the same thing though.
$A \equiv B$ means A and B have identical truth values:
$-q \wedge r \equiv q \wedge r$
$-q \wedge r \equiv r \wedge q$
$-q \wedge r \neq r \vee q$

Logical Equivalence

$A=B$ means A and B are identical "strings":
$-q \wedge r=q \wedge r$
These are equal, because they are character-for-character identical.
$-q \wedge r \neq r \wedge q$
These are NOT equal, because they are different sequences of characters. They "mean" the same thing though.
$A \equiv B$ means A and B have identical truth values:
$-q \wedge r \equiv q \wedge r$
Two formulas that are equal also are equivalent.
$-\boldsymbol{q} \wedge r \equiv r \wedge \boldsymbol{q}$
These two formulas have the same truth table!
$-q \wedge r \neq r \vee q$
When $q=T$ and $r=F, q \wedge r$ is false, but $q \vee r$ is true!
$A \leftrightarrow B$ vs. $A \equiv B$
$A \equiv B$ is an assertion over all possible truth values that A and B always have the same truth values.
$A \leftrightarrow B$ is a proposition that may be true or false depending on the truth values of the variables in A and B.
$A \equiv B$ and $(A \leftrightarrow B) \equiv T$ have the same meaning.

De Morgan's Laws

$$
\begin{aligned}
& \neg(\mathrm{q} \wedge \mathrm{r}) \equiv \neg \mathrm{q} \vee \neg \mathrm{r} \\
& \neg(\mathrm{q} \vee \mathrm{r}) \equiv \neg \mathrm{q} \wedge \neg \mathrm{r}
\end{aligned}
$$

Negate the statement:
"My code compiles or there is a bug."

To negate the statement, ask "when is the original statement false".

De Morgan's Laws

$$
\begin{aligned}
& \neg(\mathrm{q} \wedge \mathrm{r}) \equiv \neg \mathrm{q} \vee \neg \mathrm{r} \\
& \neg(\mathrm{q} \vee \mathrm{r}) \equiv \neg \mathrm{q} \wedge \neg \mathrm{r}
\end{aligned}
$$

Negate the statement:
"My code compiles or there is a bug."

To negate the statement, ask "when is the original statement false".

It's false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:
My code doesn't compile and there is not a bug.

De Morgan's Laws

$$
\text { Example: } \neg(q \wedge r) \equiv(\neg q \vee \neg r)
$$

\boldsymbol{q}	\boldsymbol{r}	$\neg \boldsymbol{q}$	$\neg r$	$\neg \boldsymbol{q} \vee \neg \boldsymbol{r}$	$\boldsymbol{q} \wedge \boldsymbol{r}$	$\neg(\boldsymbol{q} \wedge \boldsymbol{r})$	$\neg(\boldsymbol{q} \wedge \boldsymbol{r}) \leftrightarrow(\neg \boldsymbol{q} \vee \neg \boldsymbol{)}$
T	T						
T	F						
F	T						
F	F						

De Morgan's Laws

Example: $\neg(q \wedge r) \equiv(\neg q \vee \neg r)$

\boldsymbol{q}	\boldsymbol{r}	$\neg \boldsymbol{q}$	$\neg \boldsymbol{r}$	$\neg \boldsymbol{q} \vee \neg \boldsymbol{r}$	$\boldsymbol{q} \wedge \boldsymbol{r}$	$\neg(\boldsymbol{q} \wedge \boldsymbol{r})$	$\neg(\boldsymbol{q} \wedge \boldsymbol{r}) \leftrightarrow(\neg \boldsymbol{q} \vee \neg \boldsymbol{r})$
T	T	F	F	F	T	F	T
T	F	F	T	T	F	T	T
F	T	T	F	T	F	T	T
F	F	T	T	T	F	T	T

De Morgan's Laws

$$
\begin{aligned}
& \neg(\mathrm{q} \wedge \mathrm{r}) \equiv \neg \mathrm{q} \vee \neg \mathrm{r} \\
& \neg(\mathrm{q} \vee \mathrm{r}) \equiv \neg \mathrm{q} \wedge \neg \mathrm{r}
\end{aligned}
$$

```
if (!(front != null && value > front.data))
    front = new ListNode(value, front);
else {
    ListNode current = front;
    while (current.next != null && current.next.data < value))
        current = current.next;
    current.next = new ListNode(value, current.next);
}
```


De Morgan's Laws

$$
\begin{aligned}
& \neg(\mathrm{q} \wedge \mathrm{r}) \equiv \neg \mathrm{q} \vee \neg \mathrm{r} \\
& \neg(\mathrm{q} \vee \mathrm{r}) \equiv \neg \mathrm{q} \wedge \neg \mathrm{r}
\end{aligned}
$$

!(front != null \&\& value > front.data) \equiv front == null || value <= front.data

You've been using these for a while!

Lecture 2 Activity

- You will be assigned to breakout rooms. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF
- Today's task: Find an equivalent expression for $p \rightarrow q$ using only \wedge, \vee, \neg

Then fill out the poll everywhere for Activity Credit!

\mathbf{p}	\mathbf{q}	$\mathbf{p} \rightarrow \boldsymbol{q}$
T	T	T
T	F	F
F	T	T
F	F	T

Some Equivalences Related to Implication

$$
\begin{array}{lll}
q \rightarrow r & \equiv & \neg q \vee r \\
q \rightarrow r & \equiv & \neg r \rightarrow \neg q \\
q \leftrightarrow r & \equiv & (q \rightarrow r) \wedge(r \rightarrow q) \\
q \leftrightarrow r & \equiv & \neg q \leftrightarrow \neg r
\end{array}
$$

Properties of Logical Connectives

- Identity
- $q \wedge T \equiv q$
- $q \vee F \equiv q$
- Domination
- $q \vee T \equiv T$
- $q \wedge F \equiv F$
- Idempotent
- $q \vee q \equiv q$
- $q \wedge q \equiv q$
- Commutative
- $q \vee r \equiv r \vee q$
- $q \wedge r \equiv r \wedge q$
- Associative
- $(q \vee r) \vee s \equiv q \vee(r \vee s)$
- $(q \wedge r) \wedge s \equiv q \wedge(r \wedge s)$
- Distributive
- $q \wedge(r \vee s) \equiv(q \wedge r) \vee(q \wedge s)$
- $q \vee(r \wedge s) \equiv(q \vee r) \wedge(q \vee s)$
- Absorption
- $q \vee(q \wedge r) \equiv q$
- $q \wedge(q \vee r) \equiv q$
- Negation
- $q \vee \neg q \equiv T$
$-q \wedge \neg q \equiv F$

Proving equivalence

- Identity
$-p \wedge \mathrm{~T} \equiv p$
$-p \vee \mathrm{~F} \equiv p$
- Domination
$-p \vee \mathrm{~T} \equiv \mathrm{~T}$
$-p \wedge \mathrm{~F} \equiv \mathrm{~F}$
- Idempotent
$-p \vee p \equiv p$
$-p \wedge p \equiv p$
- Commutative
$-p \vee q \equiv q \vee p$
$-p \wedge q \equiv q \wedge p$
- Associative
$-(p \vee q) \vee r \equiv p \vee(q \vee r)$
$-(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
- Distributive
$-p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
$-p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
- Absorption
$-p \vee(p \wedge q) \equiv p$
$-p \wedge(p \vee q) \equiv p$
- Negation
$-p \vee \neg p \equiv \mathrm{~T}$
$-p \wedge \neg p \equiv \mathrm{~F}$

De Morgan's Laws

$$
\begin{aligned}
& \neg(p \wedge q) \equiv \neg p \vee \neg q \\
& \neg(p \vee q) \equiv \neg p \wedge \neg q
\end{aligned}
$$

Law of Implication

$$
p \rightarrow q \equiv \neg p \vee q
$$

Contrapositive

$$
p \rightarrow q \equiv \neg q \rightarrow \neg p
$$

Biconditional

$$
p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)
$$

Double Negation

$$
p \equiv \neg \neg p
$$

One can prove equivalence between 2 propositional formulas by applying a sequence of elementary equivalences!

Proving equivalence

- Identity
$-p \wedge \mathrm{~T} \equiv p$
$-p \vee \mathrm{~F} \equiv p$
- Domination
$-p \vee \mathrm{~T} \equiv \mathrm{~T}$
$-p \wedge \mathrm{~F} \equiv \mathrm{~F}$
- Idempotent
$-p \vee p \equiv p$
$-p \wedge p \equiv p$
- Commutative
$-p \vee q \equiv q \vee p$
$-p \wedge q \equiv q \wedge p$
- Associative
$-(p \vee q) \vee r \equiv p \vee(q \vee r)$
$-(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
- Distributive
$-p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
$-p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
- Absorption
$-p \vee(p \wedge q) \equiv p$
$-p \wedge(p \vee q) \equiv p$
- Negation
$-p \vee \neg p \equiv \mathrm{~T}$
$-p \wedge \neg p \equiv \mathrm{~F}$

De Morgan's Laws

$$
\begin{aligned}
& \neg(p \wedge q) \equiv \neg p \vee \neg q \\
& \neg(p \vee q) \equiv \neg p \wedge \neg q
\end{aligned}
$$

Law of Implication

$$
p \rightarrow q \equiv \neg p \vee q
$$

Contrapositive

$$
p \rightarrow q \equiv \neg q \rightarrow \neg p
$$

Biconditional

$$
p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)
$$

Double Negation

$$
p \equiv \neg \neg p
$$

One can prove equivalence between 2 propositional formulas by applying a sequence of elementary equivalences!

Example: Show that $\neg p \vee(p \vee p) \equiv T$

$$
\begin{array}{rlr}
\neg p \vee(p \vee p) & \equiv(\quad) \\
& \equiv(&) \\
& \equiv \mathbf{T}
\end{array}
$$

Proving equivalence

- Identity
$-p \wedge \mathrm{~T} \equiv p$
$-p \vee \mathrm{~F} \equiv p$
- Domination
$-p \vee \mathrm{~T} \equiv \mathrm{~T}$
$-p \wedge \mathrm{~F} \equiv \mathrm{~F}$
- Idempotent
$-p \vee p \equiv p$
$-p \wedge p \equiv p$
- Commutative
$-p \vee q \equiv q \vee p$
$-p \wedge q \equiv q \wedge p$
- Associative
$-(p \vee q) \vee r \equiv p \vee(q \vee r)$
$-(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
- Distributive
$-p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
$-p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
- Absorption
$-p \vee(p \wedge q) \equiv p$
$-p \wedge(p \vee q) \equiv p$
- Negation
$-p \vee \neg p \equiv \mathrm{~T}$
$-p \wedge \neg p \equiv \mathrm{~F}$

De Morgan's Laws

$$
\begin{aligned}
& \neg(p \wedge q) \equiv \neg p \vee \neg q \\
& \neg(p \vee q) \equiv \neg p \wedge \neg q
\end{aligned}
$$

Law of Implication

$$
p \rightarrow q \equiv \neg p \vee q
$$

Contrapositive

$$
p \rightarrow q \equiv \neg q \rightarrow \neg p
$$

Biconditional

$$
p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)
$$

Double Negation

$$
p \equiv \neg \neg p
$$

One can prove equivalence between 2 propositional formulas by applying a sequence of elementary equivalences!

Example: Show that $\neg p \vee(p \vee p) \equiv T$

$$
\begin{aligned}
\neg p \vee(p \vee p) & \equiv\left(\begin{array}{lll}
& \neg p \vee p &) \\
& \equiv\left(\begin{array}{ll}
\text { Idempotent } \\
& \\
& \equiv \mathbf{T}
\end{array}\right. &
\end{array}\right)
\end{aligned}
$$

Proving equivalence

- Identity
$-p \wedge \mathrm{~T} \equiv p$
$-p \vee \mathrm{~F} \equiv p$
- Domination
$-p \vee \mathrm{~T} \equiv \mathrm{~T}$
$-p \wedge \mathrm{~F} \equiv \mathrm{~F}$
- Idempotent
$-p \vee p \equiv p$
$-p \wedge p \equiv p$
- Commutative
$-p \vee q \equiv q \vee p$
$-p \wedge q \equiv q \wedge p$
- Associative
$-(p \vee q) \vee r \equiv p \vee(q \vee r)$
$-(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
- Distributive
$-p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
$-p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
- Absorption
$-p \vee(p \wedge q) \equiv p$
$-p \wedge(p \vee q) \equiv p$
- Negation
$-p \vee \neg p \equiv \mathrm{~T}$
$-p \wedge \neg p \equiv \mathrm{~F}$

De Morgan's Laws

$$
\begin{aligned}
& \neg(p \wedge q) \equiv \neg p \vee \neg q \\
& \neg(p \vee q) \equiv \neg p \wedge \neg q
\end{aligned}
$$

Law of Implication

$$
p \rightarrow q \equiv \neg p \vee q
$$

Contrapositive

$$
p \rightarrow q \equiv \neg q \rightarrow \neg p
$$

Biconditional

$$
p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)
$$

Double Negation

$$
p \equiv \neg \neg p
$$

One can prove equivalence between 2 propositional formulas by applying a sequence of elementary equivalences!

Example: Show that $\neg p \vee(p \vee p) \equiv T$

$$
\begin{aligned}
\neg p \vee(p \vee p) & \equiv\left(\begin{array}{ccc}
& \neg p \vee p &) \\
& \equiv\left(\begin{array}{ll}
\text { Idempotent } \\
& p \vee \neg p
\end{array}\right) \text { Commutative } \\
& \equiv \mathbf{T} &
\end{array}\right. &
\end{aligned}
$$

Proving equivalence

- Identity
$-p \wedge \mathrm{~T} \equiv p$
$-p \vee \mathrm{~F} \equiv p$
- Domination
$-p \vee \mathrm{~T} \equiv \mathrm{~T}$
$-p \wedge \mathrm{~F} \equiv \mathrm{~F}$
- Idempotent
$-p \vee p \equiv p$
$-p \wedge p \equiv p$
- Commutative
$-p \vee q \equiv q \vee p$
$-p \wedge q \equiv q \wedge p$
- Associative
$-(p \vee q) \vee r \equiv p \vee(q \vee r)$
$-(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
- Distributive
$-p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
$-p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
- Absorption
$-p \vee(p \wedge q) \equiv p$
$-p \wedge(p \vee q) \equiv p$
- Negation
$-p \vee \neg p \equiv \mathrm{~T}$
$-p \wedge \neg p \equiv \mathrm{~F}$

De Morgan's Laws

$$
\begin{aligned}
& \neg(p \wedge q) \equiv \neg p \vee \neg q \\
& \neg(p \vee q) \equiv \neg p \wedge \neg q
\end{aligned}
$$

Law of Implication

$$
p \rightarrow q \equiv \neg p \vee q
$$

Contrapositive

$$
p \rightarrow q \equiv \neg q \rightarrow \neg p
$$

Biconditional

$$
p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)
$$

Double Negation

$$
p \equiv \neg \neg p
$$

One can prove equivalence between 2 propositional formulas by applying a sequence of elementary equivalences!

Example: Show that $\neg p \vee(p \vee p) \equiv T$

$$
\begin{array}{rlll}
\neg p \vee(p \vee p) & \equiv\left(\begin{array}{lll}
& \neg p \vee p &) \\
& \text { Idempotent } \\
& \equiv(& p \vee \neg p
\end{array}\right. & \text { Commutative } \\
& \equiv \mathbf{T} & & \\
\text { Negation }
\end{array}
$$

Digital Circuits

Computing With Logic

- T corresponds to 1 or "high" voltage
- F corresponds to 0 or "low" voltage

Gates

- Take inputs and produce outputs (functions)
- Several kinds of gates
- Correspond to propositional connectives (most of them)

And Gate

AND Connective vs. AND Gate

$q \wedge r$		
\boldsymbol{q}	r	$q \wedge r$
\mathbf{T}	T	T
T	F	F
F	T	F
F	F	F

9	r	OUT
1	1	1
1	0	0
0	1	0
0	0	0

"block looks like D of AND"

Or Gate

OR Connective
 vs.
 OR Gate

$q \vee r$		
\boldsymbol{q}	r	$q \vee r$
T	T	T
T	F	T
F	T	T
F	F	F

9	r	OUT
1	1	1
1	0	1
0	1	1
0	0	0

"arrowhead block looks like V"

Not Gates

NOT Connective vs.
$\neg q$

\mathbf{q}	$\neg \mathbf{q}$
\mathbf{T}	F
F	T

NOT Gate
a-Noro- out

9	OUT
1	0
0	1

Also called inverter

Blobs are Okay!

You may write gates using blobs instead of shapes!

Combinational Logic Circuits

Values get sent along wires connecting gates

Combinational Logic Circuits

Values get sent along wires connecting gates

$$
\neg p \wedge(\neg q \wedge(r \vee s))
$$

Combinational Logic Circuits

Wires can send one value to multiple gates!

Combinational Logic Circuits

Wires can send one value to multiple gates!

$$
(q \wedge \neg r) \vee(\neg r \wedge s)
$$

Computing Equivalence

Describe an algorithm for computing if two logical expressions/circuits are equivalent.

What is the run time of the algorithm?

Compute the entire truth table for both of them!
There are 2^{n} entries in the column for n variables.

Some Familiar Properties of Arithmetic

- $x+y=y+x$
(Commutativity)
- $x \cdot(y+z)=x \cdot y+x \cdot z$
(Distributivity)
- $(x+y)+z=x+(y+z) \quad$ (Associativity)

Understanding Connectives

- Reflect basic rules of reasoning and logic
- Allow manipulation of logical formulas
- Simplification
- Testing for equivalence
- Applications
- Query optimization
- Search optimization and caching
- Artificial Intelligence
- Program verification

