
CSE 311: Foundations of Computing
Lecture 2: More Logic, Equivalence & Digital Circuits



Recap from last class

• A propositional logic formula is formed from 
propositional variables 𝑞, 𝑟, 𝑠, … , constants 
T, F, logical operations ¬,∧,∨,⊕,→,↔ and 
brackets (..)

• Example: 𝑞 ∨ ¬𝑟 ∧ 𝑠 ∧ ¬𝑠

Negation (not) ¬𝑞
Conjunction (and)         𝑞 ∧ 𝑟
Disjunction (or) 𝑞 ∨ 𝑟
Exclusive Or 𝑞 ⊕ 𝑟
Implication 𝑞 ⟶ 𝑟
Biconditional 𝑞 ⟷ 𝑟



Implication

“If it’s raining, then I have my umbrella”

It’s useful to think of implications as 
promises.  That is “Did I lie?”

q r q ® r

T T T

T F F

F T T

F F T

It’s raining It’s not raining

I have my 
umbrella

I do not have 
my umbrella



Implication

“If it’s raining, then I have my umbrella”

It’s useful to think of implications as 
promises.  That is “Did I lie?”

The only lie is when:
(a) It’s raining AND
(b) I don’t have my umbrella

q r q ® r

T T T

T F F

F T T

F F T

It’s raining It’s not raining

I have my 
umbrella No No

I do not have 
my umbrella Yes No



Implication

“If it’s raining, then I have my umbrella”

Are these true?

2 + 2 = 4 ® earth is a planet

2 + 2 = 5 ® 26 is prime

q r q ® r

T T T

T F F

F T T

F F T



Implication

“If it’s raining, then I have my umbrella”

Are these true?

2 + 2 = 4 ® earth is a planet

2 + 2 = 5 ® 26 is prime

Implication is not a causal relationship!

q r q ® r

T T T

T F F

F T T

F F T

The fact that these are unrelated doesn’t make the statement false!  “2 + 2 = 
4” is true; “earth is a planet” is true.  T® T is true.  So, the statement is true.

Again, these statements may or may not be related.  “2 + 2 = 5” is false; so, 
the implication is true.  (Whether 26 is prime or not is irrelevant).



𝑞 → 𝑟

(1) “I have collected all 151 Pokémon if I am a Pokémon master”
(2) “I have collected all 151 Pokémon only if I am a Pokémon master”

These sentences are implications in opposite directions:



𝑞 → 𝑟

(1) “I have collected all 151 Pokémon if I am a Pokémon master”
(2) “I have collected all 151 Pokémon only if I am a Pokémon master”

These sentences are implications in opposite directions:
(1) “Pokémon masters have all 151 Pokémon”
(2) “People who have 151 Pokémon are Pokémon masters”

So, the implications are:
(1) If I am a Pokémon master, then I have collected all 151 Pokémon.
(2) If I have collected all 151 Pokémon, then I am a Pokémon master.



𝑞 → 𝑟

Implication:
– q implies r
– whenever q is true r must be true
– if q then r
– r if q
– q is sufficient for r
– q only if r
– r is necessary for q

q r q ® r
T T T

T F F

F T T

F F T



Biconditional:  𝑞 ↔ 𝑟

• q iff r
• q is equivalent to r
• q implies r and r implies q
• q is necessary and sufficient for r

q r q	« r



Biconditional:  𝑞 ↔ 𝑟

• q iff r
• q is equivalent to r
• q implies r and r implies q
• q is necessary and sufficient for r

q r q	« r
T T T

T F F

F T F

F F T



Back to Garfield...

𝑞 “Garfield has black stripes”
𝑟 “Garfield is an orange cat”
𝑠 “Garfield likes lasagna”

“Garfield has black stripes if he is an orange cat and likes 
lasagna, and he is an orange cat or does not like lasagna”

(q if (r and s)) and (r or (not s))

(q “if” (r ∧ s)) ∧ (r ∨ ¬s) 



Back to Garfield...

𝑞 “Garfield has black stripes”
𝑟 “Garfield is an orange cat”
𝑠 “Garfield likes lasagna”

“Garfield has black stripes if he is an orange cat and likes 
lasagna, and he is an orange cat or does not like lasagna”

(q if (r and s)) and (r or (not s))

(q “if” (r ∧ s)) ∧ (r ∨ ¬s) 

((r ∧ s)⟶ 𝑞) ∧ (r ∨ ¬s) 



Analyzing the Garfield Sentence with a Truth Table

𝒒 𝒓 𝒔 ¬𝒔 𝒓 ∨ ¬𝒔 𝒓 ∧ 𝒔 (𝒓 ∧ 𝒔) → 𝒒 (𝒓 ∧ 𝒔 ) → 𝒒 ∧ (𝒓 ∨ ¬𝒔)

F F F

F F T

F T F

F T T

T F F

T F T

T T F

T T T



Analyzing the Garfield Sentence with a Truth Table

𝒒 𝒓 𝒔 ¬𝒔 𝒓 ∨ ¬𝒔 𝒓 ∧ 𝒔 (𝒓 ∧ 𝒔) → 𝒒 (𝒓 ∧ 𝒔 ) → 𝒒 ∧ (𝒓 ∨ ¬𝒔)

F F F T T F T T

F F T F F F T F

F T F T T F T T

F T T F T T F F

T F F T T F T T

T F T F F F T F

T T F T T F T T

T T T F T T T T



Converse, Contrapositive

Implication:
q ® r

Converse: 
r ® q

Consider
q: x is divisible by 2
r: x is divisible by 4 

Contrapositive:
¬r ® ¬q

Inverse: 
¬q ® ¬r

q® r

r® q

¬r® ¬q

¬q® ¬r



Converse, Contrapositive

Implication:
q ® r

Converse: 
r ® q

Consider
q: x is divisible by 2
r: x is divisible by 4 Divisible By 2 Not Divisible By 2

Divisible By 4

Not Divisible By 4

Contrapositive:
¬r ® ¬q

Inverse: 
¬q ® ¬r

q® r

r® q

¬r® ¬q

¬q® ¬r



Converse, Contrapositive

Implication:
q ® r

Converse: 
r ® q

Consider
q: x is divisible by 2
r: x is divisible by 4 Divisible By 2 Not Divisible By 2

Divisible By 4 4,8,12,... Impossible

Not Divisible By 4 2,6,10,... 1,3,5,...

Contrapositive:
¬r ® ¬q

Inverse: 
¬q ® ¬r

q® r

r® q

¬r® ¬q

¬q® ¬r



Converse, Contrapositive

Implication:
q ® r

Converse: 
r ® q

How do these relate to each other?

Contrapositive:
¬r ® ¬q

Inverse:
¬q ® ¬r

q r q ® r r ® q ¬q ¬r ¬q ® ¬r ¬r ® ¬q

T T

T F

F T

F F



Converse, Contrapositive

Implication:
q ® r

Converse: 
r ® q

An implication and it’s contrapositive 
have the same truth value!

Contrapositive:
¬r ® ¬q

Inverse:
¬q ® ¬r

q r q ® r r ® q ¬q ¬r ¬q ® ¬r ¬r ® ¬q

T T T T F F T T

T F F T F T T F

F T T F T F F T

F F T T T T T T



Tautologies!
Terminology:  A compound proposition is a…
– Tautology if it is always true
– Contradiction if it is always false
– Contingency if it can be either true or false

q Ú ¬q

q Å q

(q ® r) Ù q



Tautologies!
Terminology:  A compound proposition is a…
– Tautology if it is always true
– Contradiction if it is always false
– Contingency if it can be either true or false

q Ú ¬q

q Å q

(q ® r) Ù q

This is a tautology.  It’s called the “law of the excluded middle”.
If q is true, then q Ú ¬q is true. If q is false, then q Ú ¬q is true. 

This is a contradiction.  It’s always false no matter what truth 
value q takes on.

This is a contingency.  When q=T, r=T, (T ® T)ÙT is true.
When q=T, r=F, (T ® F)ÙT is false.



Logical Equivalence

A = B means A and B are identical “strings”:
– q Ù r = q Ù r

– q Ù r ≠ r Ù q



Logical Equivalence

A = B means A and B are identical “strings”:
– q Ù r = q Ù r

– q Ù r ≠ r Ù q

A º B means A and B have identical truth values:
– q Ù r º q Ù r

– q Ù r º r Ù q

– q Ù r ≢ r Ú q

These are equal, because they are character-for-character identical.

These are NOT equal, because they are different sequences of 
characters.  They “mean” the same thing though.



Logical Equivalence

A = B means A and B are identical “strings”:
– q Ù r = q Ù r

– q Ù r ≠ r Ù q

A º B means A and B have identical truth values:
– q Ù r º q Ù r

– q Ù r º r Ù q

– q Ù r ≢ r Ú q

These are equal, because they are character-for-character identical.

These are NOT equal, because they are different sequences of 
characters.  They “mean” the same thing though.

Two formulas that are equal also are equivalent.

These two formulas have the same truth table!

When q=T and r=F,  q ∧	r is false, but q ∨	r is true!



A « B vs.  A º B

A º B is an assertion over all possible truth values
that A and B always have the same truth values.

A « B is a proposition that may be true or false 
depending on the truth values of the variables in A
and B.

A º B and (A « B) º T have the same meaning.



De Morgan’s Laws

¬(q Ù r) º ¬q Ú ¬r
¬(q Ú r) º ¬q Ù ¬r

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement,
ask “when is the original statement false”.



De Morgan’s Laws

¬(q Ù r) º ¬q Ú ¬r
¬(q Ú r) º ¬q Ù ¬r

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement,
ask “when is the original statement false”.

It’s false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:
My code doesn’t compile and there is not a bug.



De Morgan’s Laws

q r ¬q ¬r ¬q Ú ¬r q Ù r ¬(q Ù r) ¬(q Ù r) « (¬q Ú ¬r)
T T

T F

F T

F F

Example:  ¬(q Ù r) º (¬q Ú ¬r)



De Morgan’s Laws

q r ¬q ¬r ¬q Ú ¬r q Ù r ¬(q Ù r) ¬(q Ù r) « (¬q Ú ¬r)
T T F F F T F T

T F F T T F T T

F T T F T F T T

F F T T T F T T

Example:  ¬(q Ù r) º (¬q Ú ¬r)



De Morgan’s Laws

¬(q Ù r) º ¬q Ú ¬r
¬(q Ú r) º ¬q Ù ¬r

if (!(front != null && value > front.data))
front = new ListNode(value, front);

else {
ListNode current = front;
while (current.next != null && current.next.data < value))

current = current.next;
current.next = new ListNode(value, current.next);

}



De Morgan’s Laws

¬(q Ù r) º ¬q Ú ¬r
¬(q Ú r) º ¬q Ù ¬r

!(front != null && value > front.data)

front == null || value <= front.data

º

You’ve been using these for a while!



Lecture 2 Activity

• You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share screen, showing this PDF 
• Today’s task: Find an equivalent expression for 𝑝 → 𝑞 using only ∧,∨, ¬

Then fill out the poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login with your UW 
identity

p q p ® q

T T T

T F F

F T T

F F T

http://pollev.com/thomas311


Some Equivalences Related to Implication

q ® r º ¬q Ú r
q ® r º ¬r ® ¬q
q « r º (q® r) Ù (r ® q)
q « r º ¬q « ¬r



Properties of Logical Connectives

• Identity
- 𝑞 ∧ 𝑇 ≡ 𝑞
- 𝑞 ∨ 𝐹 ≡ 𝑞
• Domination
- 𝑞 ∨ 𝑇 ≡ 𝑇
- 𝑞 ∧ 𝐹 ≡ 𝐹
• Idempotent
- 𝑞 ∨ 𝑞 ≡ 𝑞
- 𝑞 ∧ 𝑞 ≡ 𝑞
• Commutative
- 𝑞 ∨ 𝑟 ≡ 𝑟 ∨ 𝑞
- 𝑞 ∧ 𝑟 ≡ 𝑟 ∧ 𝑞

• Associative
- 𝑞 ∨ 𝑟 ∨ 𝑠 ≡ 𝑞 ∨ 𝑟 ∨ 𝑠
- 𝑞 ∧ 𝑟 ∧ 𝑠 ≡ 𝑞 ∧ 𝑟 ∧ 𝑠
• Distributive
- 𝑞 ∧ 𝑟 ∨ 𝑠 ≡ 𝑞 ∧ 𝑟 ∨ 𝑞 ∧ 𝑠
- 𝑞 ∨ 𝑟 ∧ 𝑠 ≡ 𝑞 ∨ 𝑟 ∧ 𝑞 ∨ 𝑠
• Absorption
- 𝑞 ∨ 𝑞 ∧ 𝑟 ≡ 𝑞
- 𝑞 ∧ 𝑞 ∨ 𝑟 ≡ 𝑞
• Negation
- 𝑞 ∨ ¬𝑞 ≡ 𝑇
- 𝑞 ∧ ¬𝑞 ≡ 𝐹



Proving equivalence

One can prove equivalence between 2 propositional formulas 
by applying a sequence of elementary equivalences!



Proving equivalence

One can prove equivalence between 2 propositional formulas 
by applying a sequence of elementary equivalences!

Example: Show that ¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡ 𝑇
¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡ (                       )

≡ (                       )
≡ T



Proving equivalence

One can prove equivalence between 2 propositional formulas 
by applying a sequence of elementary equivalences!

Example: Show that ¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡ 𝑇
¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡ (                       )

≡ (                       )
≡ T

¬𝑝 ∨ 𝑝 Idempotent



Proving equivalence

One can prove equivalence between 2 propositional formulas 
by applying a sequence of elementary equivalences!

Example: Show that ¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡ 𝑇
¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡ (                       )

≡ (                       )
≡ T

¬𝑝 ∨ 𝑝 Idempotent
𝑝 ∨ ¬𝑝 Commutative



Proving equivalence

One can prove equivalence between 2 propositional formulas 
by applying a sequence of elementary equivalences!

Example: Show that ¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡ 𝑇
¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡ (                       )

≡ (                       )
≡ T

¬𝑝 ∨ 𝑝 Idempotent

Negation
𝑝 ∨ ¬𝑝 Commutative



Digital Circuits

Computing With Logic
– T corresponds to 1 or “high” voltage 
– F corresponds to 0 or “low” voltage

Gates 
– Take inputs and produce outputs (functions)
– Several kinds of gates
– Correspond to propositional connectives (most 

of them)



And Gate

q r q Ù r

T T T

T F F

F T F

F F F

q r OUT

1 1 1

1 0 0

0 1 0

0 0 0

AND Connective AND Gate

r
q

OUTAND

“block looks like D of AND”

q OUTANDrq Ù r

vs.



Or Gate

q r q Ú r

T T T

T F T

F T T

F F F

q r OUT

1 1 1

1 0 1

0 1 1

0 0 0

OR Connective OR Gate

q OUTORrq Ú r

vs.

q
r

OR

“arrowhead block looks like V”

OUT



Not Gates

¬q
NOT Gate

q ¬ q

T F

F T

q OUT

1 0

0 1

vs.NOT Connective

Also called 
inverter

q OUTNOT

q OUTNOT



Blobs are Okay!

q OUTNOT

q
r OUTAND

q
r OUTOR

You may write gates using blobs instead of shapes!



Combinational Logic Circuits

Values get sent along wires connecting gates 

NOT

OR

AND

AND

NOT

p

q

r
s

OUT



Combinational Logic Circuits

Values get sent along wires connecting gates 

NOT

OR

AND

AND

NOT

p

q

r
s

OUT



Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
q

r

s

OUT



Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
q

r

s

OUT

𝑞 ∧ ¬𝑟 ∨ (¬𝑟 ∧ 𝑠)



Computing Equivalence

Describe an algorithm for computing if two logical 
expressions/circuits are equivalent.

What is the run time of the algorithm?

Compute the entire truth table for both of them!

There are 2n entries in the column for n variables.



Some Familiar Properties of Arithmetic

• 𝑥 + 𝑦 = 𝑦 + 𝑥 (Commutativity)
– 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝
– 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝

• 𝑥 ⋅ 𝑦 + 𝑧 = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧 (Distributivity)
– 𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟)
– 𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

• 𝑥 + 𝑦 + 𝑧 = 𝑥 + (𝑦 + 𝑧) (Associativity)
– 𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ 𝑞 ∨ 𝑟
– 𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ (𝑞 ∧ 𝑟)



Understanding Connectives

• Reflect basic rules of reasoning and logic
• Allow manipulation of logical formulas
– Simplification
– Testing for equivalence

• Applications
– Query optimization
– Search optimization and caching
– Artificial Intelligence
– Program verification


