
CSE 311: Foundations of Computing

Lecture 6:  More Predicate Logic



Asking homework questions on Ed

• Link: https://edstem.org/us/courses/4896/discussion/

• New system on Ed: we are creating threads of the form 
“Homework X, Problem Y” for each homework problem.

• If you have a question for a particular homework
problem, please:
• Read the whole thread
• Then ask the question in that thread



Last class: Intro to predicate logic

• Domain of discourse = variable range
• Predicates: Functions 𝑃 𝑥 that return a truth value for 

each 𝑥 in domain (predicates may depend on more than 
one variable, e.g. 𝑄(𝑥!, 𝑥", 𝑥#) )

• Existential quantor ∃ and universal quantor ∀



Last class: Intro to predicate logic

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”

Greater(x, y) ::= “x > y”
Predicate Definitions

Positive Integers
Domain of Discourse

"x (Even(x) Ú Odd(x))

$x (Even(x) Ù Odd(x))

"x Greater(x+1, x)

Determine the truth values of each of these statements:

• Domain of discourse = variable range
• Predicates: Functions 𝑃 𝑥 that return a truth value for 

each 𝑥 in domain (predicates may depend on more than 
one variable, e.g. 𝑄(𝑥!, 𝑥", 𝑥#) )

• Existential quantor ∃ and universal quantor ∀



Last class: Intro to predicate logic

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”

Greater(x, y) ::= “x > y”
Predicate Definitions

Positive Integers
Domain of Discourse

"x (Even(x) Ú Odd(x))

$x (Even(x) Ù Odd(x))

"x Greater(x+1, x)

Determine the truth values of each of these statements:

T      every integer is either even or odd

F      no integer is both even and odd

T      adding 1 makes a bigger number

• Domain of discourse = variable range
• Predicates: Functions 𝑃 𝑥 that return a truth value for 

each 𝑥 in domain (predicates may depend on more than 
one variable, e.g. 𝑄(𝑥!, 𝑥", 𝑥#) )

• Existential quantor ∃ and universal quantor ∀



English to Predicate Logic

“Red cats like tofu” 

“Some red cats don’t like tofu” 

Cat(x) ::= “x is a cat”
Red(x) ::= “x is red”
LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse



English to Predicate Logic

“Red cats like tofu” 

“Some red cats don’t like tofu” 

Cat(x) ::= “x is a cat”
Red(x) ::= “x is red”
LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse

"x ((Red(x) Ù Cat(x)) ® LikesTofu(x))

$y ((Red(y) Ù Cat(y)) Ù ¬LikesTofu(y))



“Red cats like tofu” 

“Some red cats don’t like tofu” 

English to Predicate Logic

Cat(x) ::= “x is a cat”
Red(x) ::= “x is red”
LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse

When there’s no leading 
quantification, it means “for all”.

“Some” means “there exists”.

When putting two predicates together like this, we 
use an “and”.

When restricting to a smaller 
domain in a “for all” we use 
implication.

When restricting to a smaller 
domain in an “exists” we use 
and.



Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”
Predicate Definitions

(*) "x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition!  Which one “feels” right?

Key Idea: In every domain, exactly one of a 
statement and its negation should be true.



Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”
Predicate Definitions

(*) "x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Key Idea: In every domain, exactly one of a 
statement and its negation should be true.

{plum}
Domain of Discourse

{apple}
Domain of Discourse

{plum, apple}
Domain of Discourse

(*), (a) (b), (c) (a), (b)



Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”
Predicate Definitions

(*) "x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Key Idea: In every domain, exactly one of a 
statement and its negation should be true.

{plum}
Domain of Discourse

{apple}
Domain of Discourse

{plum, apple}
Domain of Discourse

(*), (a) (b), (c) (a), (b)

The only choice that ensures exactly one of the statement and its negation is (b).



De Morgan’s Laws for Quantifiers

¬"x P(x) º $x ¬ P(x)
¬ $x P(x) º "x ¬ P(x)



De Morgan’s Laws for Quantifiers

¬ $ x " y  ( x ≥ y)
º " x ¬ "y  ( x ≥ y)
º " x  $ y ¬ ( x ≥ y)
º " x  $ y (y > x)

“There is no largest integer”

“For every integer, there is a larger integer”

¬"x P(x) º $x ¬ P(x)
¬ $x P(x) º "x ¬ P(x)



Scope of Quantifiers

$x  (P(x) Ù Q(x)) vs. $x P(x) Ù $x Q(x)



scope of quantifiers

$x (P(x) Ù Q(x)) vs. $x P(x) Ù $x Q(x)

This one asserts P 
and Q of the same x.

This one asserts P and Q 
of potentially different x’s.



Scope of Quantifiers

Example: NotLargest(x)  º $ y Greater (y, x)                            
º $ z Greater (z, x)

truth value:

doesn’t depend on y or z “bound variables”
does depend on x “free variable”

quantifiers only act on free variables of the formula 
they quantify

" x ($ y (P(x,y) ®" x Q(y, x)))



Quantifier “Style”

"x($y (P(x,y) ®" x Q(y, x)))

This isn’t “wrong”, it’s just horrible style.
Don’t confuse your reader by using the same 
variable multiple times…there are a lot of letters…



Nested Quantifiers

• Bound variable names don’t matter

"x $y P(x, y) º "a $b P(a, b)

• Positions of quantifiers can sometimes change
"x (Q(x) Ù $y P(x, y)) º "x $y (Q(x) Ù P(x, y))

• But:   order is important...



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”
Predicate Definitions

Integers
OR

{1, 2, 3, 4}

Domain of Discourse

“Every number has a number greater than or equal to it.”

x

y
1   2   3   4

1
2
3
4

T F F F

T T F F

T T T F

T T T T

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

$x "y GreaterEq(x, y)))

"y $x GreaterEq(x, y)))



Quantification with Two Variables

expression when true when false

"x " y P(x, y) Every pair is true. At least one pair is false.

$ x $ y P(x, y) At least one pair is true. All pairs are false.

" x $ y P(x, y) We can find a specific y for 
each x.
(x1, y1), (x2, y2), (x3, y3)

Some x doesn’t have a 
corresponding y.

$ y " x P(x, y) We can find ONE y that 
works no matter what x is.
(x1, y), (x2, y), (x3, y)

For any candidate y, there is 
an x that it doesn’t work for.



Lecture 6 Activity

• You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share screen, showing this PDF 
• Today’s task: Consider the predicate logic expression

¬∃𝑥 [ ∀𝑦 𝑃 𝑥, 𝑦 ∨ (∃𝑧 𝑄(𝑥, 𝑧))]
• Obtain an equivalent logic expression where negations are directly in 

front of the predicates.

Then fill out the poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login with your UW 
identity

¬"x P(x) º $x ¬ P(x)
¬ $x P(x) º "x ¬ P(x)

De Morgan Laws:

http://pollev.com/thomas311


Logical Inference

• So far we’ve considered:
– How to understand and express things using 

propositional and predicate logic
– How to compute using Boolean (propositional) logic
– How to show that different ways of expressing or 

computing them are equivalent to each other

• Logic also has methods that let us infer implied 
properties from ones that we know
– Equivalence is a small part of this



Applications of Logical Inference

• Software Engineering
– Express desired properties of program as set of logical 

constraints
– Use inference rules to show that program implies that 

those constraints are satisfied
• Artificial Intelligence
– Automated reasoning 

• Algorithm design and analysis
– e.g.,  Correctness, Loop invariants.

• Logic Programming, e.g. Prolog
– Express desired outcome as set of constraints
– Automatically apply logic inference to derive solution



Proofs

• Start with hypotheses and facts
• Use rules of inference to extend set of facts
• Result is proved when it is included in the set



An inference rule:  Modus Ponens

• If p and p ® q are both true then q must be true

• Write this rule as

• Given: 
– If it is Friday, then you have a 311 class today. 
– It is Friday.

• Therefore, by Modus Ponens:  
– You have a 311 class today.

p, p ® q
∴ q



Inference Rules

A  ;  B 
∴ C  ,  D

A  ;  A ® B   
∴ B   

Requirements:
Conclusions:

If A is true and B is true ….

Then, C must 
be true

Then D must 
be true

Example (Modus Ponens):

If I have A and A ® B both true,
Then B must be true.



Axioms:  Special inference rules

∴ C  ,  D

∴ A Ú¬A 

Requirements:
Conclusions:

If I have nothing…

Example (Excluded Middle):

A Ú¬A must be true.

Then D must 
be true

Then, C must 
be true



My First Proof!

Show that s follows from q, q ® r, and r ® s

1.  q Given
2. q ® r     Given
3. r ® s  Given
4.
5.



My First Proof!

Show that s follows from q, q ® r, and r ® s

1.  q Given
2. q ® r     Given
3. r ® s  Given
4. r  MP: 1, 2
5. s MP: 3, 4



Proofs can use equivalences too

Show that ¬q follows from q ® r and ¬r

1. q ® r              Given
2. ¬r                 Given
3.
4.



Proofs can use equivalences too

Show that ¬q follows from q ® r and ¬r

1. q ® r              Given
2. ¬r                 Given
3. ¬r ® ¬q     Contrapositive: 1
4.



Proofs can use equivalences too

Show that ¬q follows from q ® r and ¬r

1. q ® r              Given
2. ¬r                 Given
3. ¬r ® ¬q     Contrapositive: 1
4. ¬q                 MP: 2, 3



Simple Propositional Inference Rules

Excluded middle plus two inference rules per binary 
connective, one to eliminate it and one to introduce it

q Ù r
∴ q, r

q, r   
∴ q Ù r 

q              x
∴ q Ú r

q Ú r , ¬q
∴ r

q, q ® r
∴ r

p Þ q  
∴ p ® q

Direct Proof Rule
Not like other rules



Proofs

Show that r follows from p, p ® q and (p ∧	q) ® r

p, p ® q
∴ q

How To Start:
We have givens, find the ones that go 
together and use them.  Now, treat new
things as givens, and repeat.

p Ù q
∴ p, q

p, q   
∴ p Ù q 



Proofs

Show that 𝑟 follows from 𝑝, 𝑝 → 𝑞, and 𝑝 ∧ 𝑞 → 𝑟

1. 𝑝 Given
2. 𝑝 → 𝑞 Given
3.
4.
5.
6.



Proofs

Show that 𝑟 follows from 𝑝, 𝑝 → 𝑞, and 𝑝 ∧ 𝑞 → 𝑟

1. 𝑝 Given
2. 𝑝 → 𝑞 Given
3. 𝑞 MP: 1, 2
4.
5.
6.



Proofs

Show that 𝑟 follows from 𝑝, 𝑝 → 𝑞, and 𝑝 ∧ 𝑞 → 𝑟

1. 𝑝 Given
2. 𝑝 → 𝑞 Given
3. 𝑞 MP: 1, 2
4. 𝑝 ∧ 𝑞 Intro Ù: 1, 3
5.
6.



Proofs

Show that 𝑟 follows from 𝑝, 𝑝 → 𝑞, and 𝑝 ∧ 𝑞 → 𝑟

1. 𝑝 Given
2. 𝑝 → 𝑞 Given
3. 𝑞 MP: 1, 2
4. 𝑝 ∧ 𝑞 Intro Ù: 1, 3
5. 𝑝 ∧ 𝑞 → 𝑟 Given
6.



Proofs

Show that 𝑟 follows from 𝑝, 𝑝 → 𝑞, and 𝑝 ∧ 𝑞 → 𝑟

1. 𝑝 Given
2. 𝑝 → 𝑞 Given
3. 𝑞 MP: 1, 2
4. 𝑝 ∧ 𝑞 Intro Ù: 1, 3
5. 𝑝 ∧ 𝑞 → 𝑟 Given
6. 𝑟 MP: 4, 5



Proofs

Show that 𝑟 follows from 𝑝, 𝑝 → 𝑞, and 𝑝 ∧ 𝑞 → 𝑟

1. 𝑝 Given
2. 𝑝 → 𝑞 Given
3. 𝑞 MP: 1, 2
4. 𝑝 ∧ 𝑞 Intro Ù: 1, 3
5. 𝑝 ∧ 𝑞 → 𝑟 Given
6. 𝑟 MP: 4, 5

𝑞𝑝
𝑝 ∧ 𝑞 𝑝 ∧ 𝑞 → 𝑟

𝑟

MP

Intro Ù

MP

Two visuals of the same proof.
We will use the top one, but if 
the bottom one helps you 
think about it, that’s great!

𝑝 𝑝 → 𝑞



Important: Applications of Inference Rules

• You can use equivalences to make substitutions
of any sub-formula.

• Inference rules only can be applied to whole 
formulas (not correct otherwise).

e.g.  1.  p ® q given
2.  (p Ú r) ® q           intro Ú from 1.

Does not follow!  e.g . p=F, q=F, r=T



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

20. ¬𝒓 Idea: Work backwards!

First: Write down givens 
and goal



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

20. ¬𝒓 MP: 2,

Idea: Work backwards!

We want to eventually get ¬𝒓.  How?
• We can use 𝒒 → ¬𝒓 to get there.
• The justification between 2 and 20 

looks like “elim →” which is MP.



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

19. 𝒒
20. ¬𝒓 MP: 2, 19

Idea: Work backwards!

We want to eventually get ¬𝒓.  How?
• Now, we have a new “hole”
• We need to prove 𝒒…

• Notice that at this point, if we 
prove 𝒒, we’ve proven ¬𝒓…



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

19. 𝒒
20. ¬𝒓 MP: 2, 19

This looks like or-elimination.



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

18. ¬¬𝒔
19. 𝒒 ∨ Elim: 3, 18
20. ¬𝒓 MP: 2, 19

¬¬𝒔 doesn’t show up in the givens but
𝒔 does and we can use equivalences



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

17. 𝒔
18. ¬¬𝒔 Double Negation: 17
19. 𝒒 ∨ Elim: 3, 18
20. ¬𝒓 MP: 2, 19 



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

17. 𝒔 ∧ Elim: 1
18. ¬¬𝒔 Double Negation: 17
19. 𝒒 ∨ Elim: 3, 18
20. ¬𝒓 MP: 2, 19 

No holes left!  We just 
need to clean up a bit.



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given
4. 𝒔 ∧ Elim: 1
5. ¬¬𝒔 Double Negation: 4
6. 𝒒 ∨ Elim: 3, 5
7. ¬𝒓 MP: 2, 6 


