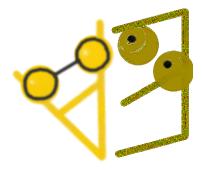
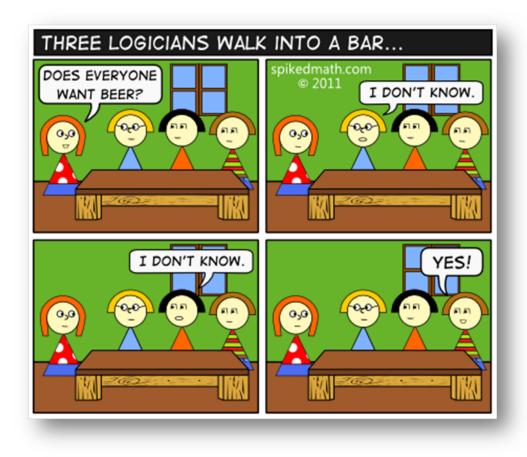
CSE 311: Foundations of Computing

Lecture 6: More Predicate Logic





Asking homework questions on Ed

- New system on Ed: we are creating threads of the form "Homework X, Problem Y" for each homework problem.
- If you have a question for a particular homework problem, please:
 - Read the whole thread
 - Then ask the question in that thread

• Link: https://edstem.org/us/courses/4896/discussion/

Last class: Intro to predicate logic

- **Domain of discourse** = variable range
- **Predicates**: Functions P(x) that return a truth value for each x in domain (predicates may depend on more than one variable, e.g. $Q(x_1, x_2, x_3)$)
- Existential quantor ∃ and universal quantor ∀

Last class: Intro to predicate logic

- **Domain of discourse** = variable range
- **Predicates**: Functions P(x) that return a truth value for each x in domain (predicates may depend on more than one variable, e.g. $Q(x_1, x_2, x_3)$)
- Existential quantor ∃ and universal quantor ∀

	Predicate Definitions	Predicate Definitions		
Domain of Discourse	Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"		
Positive Integers	Odd(x) ::= "x is odd"			

Determine the truth values of each of these statements:

 $\forall x (Even(x) \lor Odd(x))$

 $\exists x (Even(x) \land Odd(x))$

∀x Greater(x+1, x)

Last class: Intro to predicate logic

- **Domain of discourse** = variable range
- **Predicates**: Functions P(x) that return a truth value for each x in domain (predicates may depend on more than one variable, e.g. $Q(x_1, x_2, x_3)$)
- Existential quantor ∃ and universal quantor ∀

	Predicate Definitions		
Domain of Discourse	Even(x) ::= "x is even"	Greater(x, y) ::= " $x > y$ "	
Positive Integers	Odd(x) ::= "x is odd"		

every integer is either even or odd

Determine the truth values of each of these statements:

 $\forall x (Even(x) \lor Odd(x)) \top$

 $\exists x (Even(x) \land Odd(x)) \in \mathbf{F}$ no integer is both even and odd

 $\forall x \text{ Greater}(x+1, x)$ **T** adding **1** makes a bigger number

English to Predicate Logic

Domain of Discourse Mammals **Predicate Definitions**

Cat(x) ::= "x is a cat" Red(x) ::= "x is red" LikesTofu(x) ::= "x likes tofu"

"Red cats like tofu"

"Some red cats don't like tofu"

English to Predicate Logic

Domain of Discourse Mammals Predicate Definitions

Cat(x) ::= "x is a cat" Red(x) ::= "x is red" LikesTofu(x) ::= "x likes tofu"

"Red cats like tofu"

 $\forall x ((\text{Red}(x) \land \text{Cat}(x)) \rightarrow \text{LikesTofu}(x))$

"Some red cats don't like tofu"

 $\exists y ((\text{Red}(y) \land \text{Cat}(y)) \land \neg \text{LikesTofu}(y))$

English to Predicate Logic

Domain of Discourse Mammals Predicate Definitions

Cat(x) ::= "x is a cat" Red(x) ::= "x is red"

LikesTofu(x) ::= "x likes tofu"

When putting two predicates together like this, we use an "and".

"Red cats like tofu"

When restricting to a smaller domain in a "for all" we use **implication**.

When there's no leading quantification, it means "for all".

"Some red cats don't like tofu"
When restricting to a smaller domain in an "exists" we use and.

"Some" means "there exists".

Negations of Quantifiers

Predicate Definitions

PurpleFruit(x) ::= "x is a purple fruit"

(*) $\forall x PurpleFruit(x)$ ("All fruits are purple")

What is the negation of (*)?

- (a) "there exists a purple fruit"
- (b) "there exists a non-purple fruit"
- (c) "all fruits are not purple"

Try your intuition! Which one "feels" right?

Key Idea: In every domain, exactly one of a statement and its negation should be true.

Negations of Quantifiers

Predicate Definitions

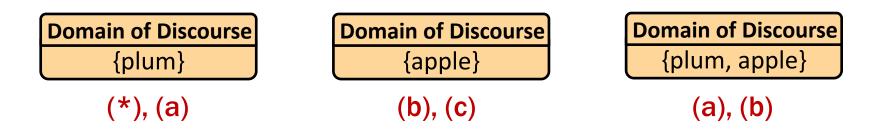
PurpleFruit(x) ::= "x is a purple fruit"

(*) $\forall x PurpleFruit(x)$ ("All fruits are purple")

What is the negation of (*)?

- (a) "there exists a purple fruit"
- (b) "there exists a non-purple fruit"
- (c) "all fruits are not purple"

Key Idea: In every domain, exactly one of a statement and its negation should be true.



Negations of Quantifiers

Predicate Definitions

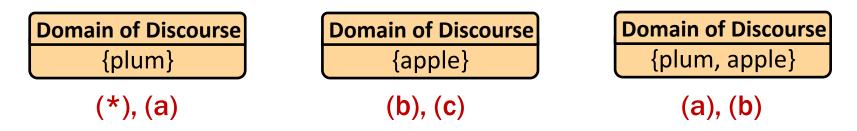
PurpleFruit(x) ::= "x is a purple fruit"

(*) $\forall x PurpleFruit(x)$ ("All fruits are purple")

What is the negation of (*)?

- (a) "there exists a purple fruit"
- (b) "there exists a non-purple fruit"
- (c) "all fruits are not purple"

Key Idea: In every domain, exactly one of a statement and its negation should be true.



The only choice that ensures exactly one of the statement and its negation is (b).

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

"There is no largest integer"

$$\neg \exists x \forall y (x \ge y)$$

$$\equiv \forall x \neg \forall y (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

"For every integer, there is a larger integer"

 $\exists x \ (P(x) \land Q(x)) \quad VS. \quad \exists x \ P(x) \land \exists x \ Q(x)$

 $\exists x (P(x) \land Q(x)) VS. \exists x P(x) \land \exists x Q(x)$

This one asserts P and Q of the same x.

This one asserts P and Q of potentially different x's.

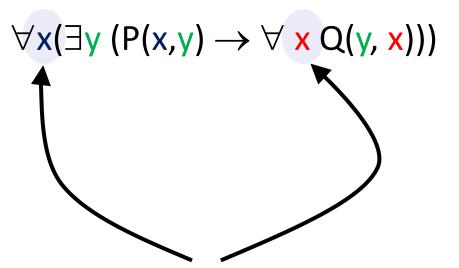
```
Example: NotLargest(x) \equiv \exists y Greater (y, x)
\equiv \exists z Greater (z, x)
```

truth value:

doesn't depend on y or z "bound variables" does depend on x "free variable"

quantifiers only act on free variables of the formula they quantify

 $\forall \mathbf{x} (\exists \mathbf{y} (\mathsf{P}(\mathbf{x},\mathbf{y}) \rightarrow \forall \mathbf{x} \mathsf{Q}(\mathbf{y},\mathbf{x})))$

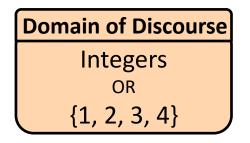


This isn't "wrong", it's just horrible style. Don't confuse your reader by using the same variable multiple times...there are a lot of letters... • Bound variable names don't matter

 $\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)$

- Positions of quantifiers can sometimes change $\forall x (Q(x) \land \exists y P(x, y)) \equiv \forall x \exists y (Q(x) \land P(x, y))$
- But: order is important...

Quantifier Order Can Matter



Predicate Definitions GreaterEq $(x, y) ::= "x \ge y"$

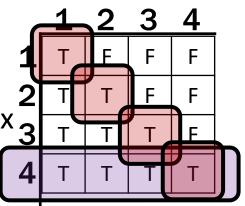
"There is a number greater than or equal to all numbers."

 $\exists x \forall y \text{ GreaterEq}(x, y)))$

"Every number has a number greater than or equal to it."

 $\forall y \exists x \text{ GreaterEq}(x, y))$

The purple statement requires **an entire row** to be true. The red statement requires one entry in **each column** to be true.



y

Quantification with Two Variables

expression	when true	when false
∀x ∀ y P(x, y)	Every pair is true.	At least one pair is false.
∃ x ∃ y P(x, y)	At least one pair is true.	All pairs are false.
∀ x ∃ y P(x, y)	We can find a specific y for each x. $(x_1, y_1), (x_2, y_2), (x_3, y_3)$	Some x doesn't have a corresponding y.
∃ y ∀ x P(x, y)	We can find ONE y that works no matter what x is. (x ₁ , y), (x ₂ , y), (x ₃ , y)	For any candidate y, there is an x that it doesn't work for.

Lecture 6 Activity

- You will be assigned to **breakout rooms**. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF
- Today's task: Consider the predicate logic expression $\neg \exists x [(\forall y P(x, y)) \lor (\exists z Q(x, z))]$
- Obtain an equivalent logic expression where negations are directly in front of the predicates.

Then fill out the poll everywhere for Activity Credit! Go to pollev.com/thomas311 and login with your UW identity

De Morgan Laws:

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \neg \exists x P(x) \equiv \forall x \neg P(x)$$

- So far we've considered:
 - How to understand and express things using propositional and predicate logic
 - How to compute using Boolean (propositional) logic
 - How to show that different ways of expressing or computing them are *equivalent* to each other
- Logic also has methods that let us *infer* implied properties from ones that we know
 - Equivalence is a small part of this

Applications of Logical Inference

Software Engineering

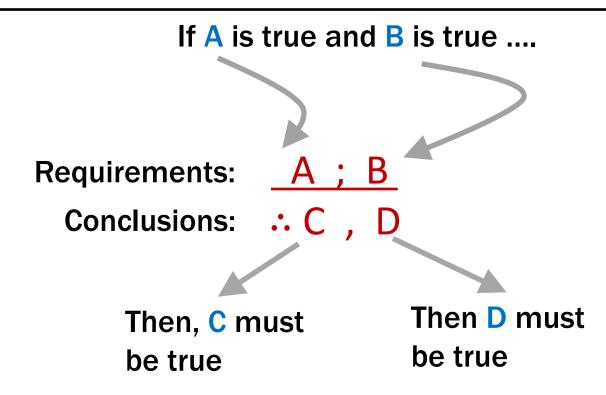
- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

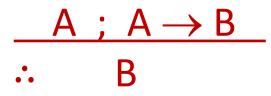
An inference rule: Modus Ponens

- If p and $p \rightarrow q$ are both true then q must be true
- Write this rule as $p, p \rightarrow q$ $\therefore q$
- Given:
 - If it is Friday, then you have a 311 class today.
 - It is Friday.
- Therefore, by Modus Ponens:
 - You have a 311 class today.

Inference Rules

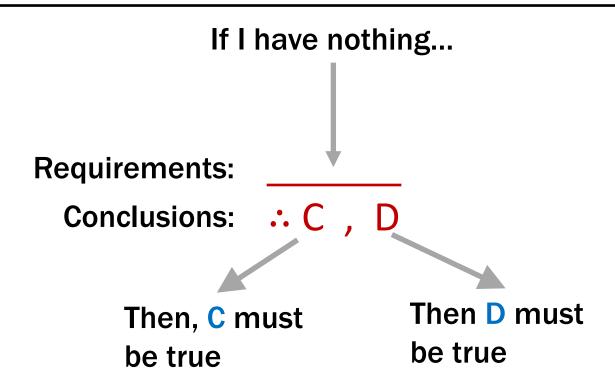


Example (Modus Ponens):



If I have A and $A \rightarrow B$ both true, Then B must be true.

Axioms: Special inference rules



Example (Excluded Middle):

 $\therefore A \lor \neg A$

 $A \lor \neg A$ must be true.

Show that **s** follows from $q, q \rightarrow r$, and $r \rightarrow s$

- 1. q Given
- 2. $\mathbf{q} \rightarrow \mathbf{r}$ Given
- 3. $r \rightarrow s$ Given
- 4.
- 5.

Show that **s** follows from $q, q \rightarrow r$, and $r \rightarrow s$

- 1. q Given
- 2. $\mathbf{q} \rightarrow \mathbf{r}$ Given
- 3. $r \rightarrow s$ Given
- 4. r MP: 1, 2
- 5. **s** MP: 3, 4

Show that $\neg q$ follows from $q \rightarrow r$ and $\neg r$

1. $\mathbf{q} \rightarrow \mathbf{r}$ Given2. $\neg \mathbf{r}$ Given3.4.

Show that $\neg q$ follows from $q \rightarrow r$ and $\neg r$

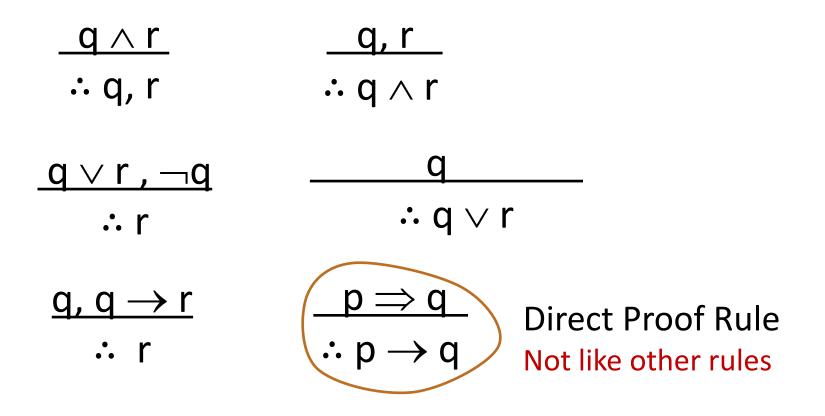
1. $\mathbf{q} \rightarrow \mathbf{r}$ Given2. $\neg \mathbf{r}$ Given3. $\neg \mathbf{r} \rightarrow \neg \mathbf{q}$ Contrapositive: 14.

Show that $\neg q$ follows from $q \rightarrow r$ and $\neg r$

1. $\mathbf{q} \rightarrow \mathbf{r}$ Given2. $\neg \mathbf{r}$ Given3. $\neg \mathbf{r} \rightarrow \neg \mathbf{q}$ Contrapositive: 14. $\neg \mathbf{q}$ MP: 2, 3

Simple Propositional Inference Rules

Excluded middle plus two inference rules per binary connective, one to eliminate it and one to introduce it



Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$ and $(\mathbf{p} \land \mathbf{q}) \rightarrow \mathbf{r}$

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

> p∧q ∴p,q

<u>p, p → q</u>

• q

____p, q____ ∴ p ∧ q Show that *r* follows from $p, p \rightarrow q$, and $p \land q \rightarrow r$

1.
$$p$$
Given2. $p \rightarrow q$ Given3..4..5..6..

Show that *r* follows from $p, p \rightarrow q$, and $p \land q \rightarrow r$

1.
$$p$$
Given2. $p \rightarrow q$ Given3. q MP: 1, 24.5.5.6.

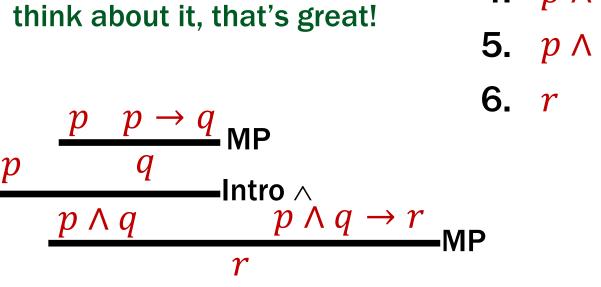
6.

1.	p	Given
2.	$p \rightarrow q$	Given
3.	q	MP: 1, 2
4.	$p \wedge q$	Intro ∧: 1, 3
5.		

1.	p	Given
2.	$p \rightarrow q$	Given
3.	q	MP: 1, 2
4.	$p \wedge q$	Intro \: 1, 3
5.	$p \land q \rightarrow r$	Given
6.		

1.	p	Given
2.	$p \rightarrow q$	Given
3.	q	MP: 1, 2
4.	$p \wedge q$	Intro ∧: 1, 3
5.	$p \wedge q \rightarrow r$	Given
6.	r	MP: 4, 5

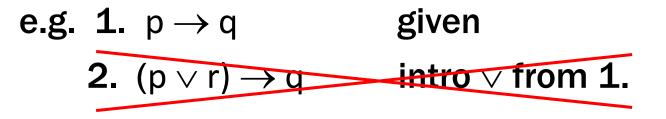
Two visuals of the same proof. We will use the top one, but if the bottom one helps you think about it, that's great!



1.	p	Given
2.	$p \rightarrow q$	Given
3.	q	MP: 1, 2
4.	$p \wedge q$	Intro ∧: 1, 3
5.	$p \land q \rightarrow r$	Given
6.	r	MP: 4. 5

Important: Applications of Inference Rules

- You can use equivalences to make substitutions of any sub-formula.
- Inference rules only can be applied to whole formulas (not correct otherwise).



Does not follow! e.g. p=F, q=F, r=T

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

First: Write down givens and goal

Idea: Work backwards!

20

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim →" which is MP.

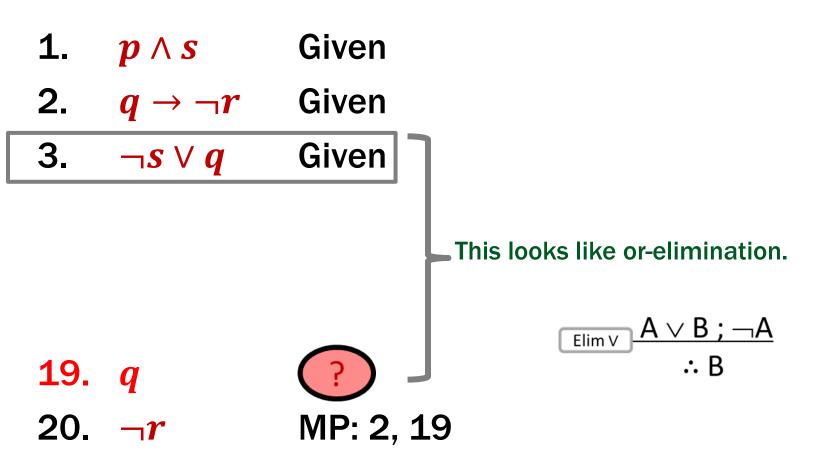
MP: 2, ?

- **1.** $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove *q*...
 - Notice that at this point, if we prove *q*, we've proven ¬*r*...



- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

 18.
 ¬¬S
 ?
 s do

 19.
 q
 V Elim: 3, 18

20. ¬*r* MP: 2, 19

¬¬*s* doesn't show up in the givens but *s* does and we can use equivalences

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given
- 17. *s*
- **18.** $\neg \neg s$ **Double Negation:17**
- **19.** *q* V Elim: 3, 18
- 20. *¬r* MP: 2, 19

1.	$\boldsymbol{p} \wedge \boldsymbol{s}$	Given	No holes left! We just
2.	q ightarrow eg r	Given	need to clean up a bit.
3.	$\neg s \lor q$	Given	
17.	<i>S</i>	∧ Elim: 1	
18.	$\neg \neg S$	Double Negation:	17
19.	\boldsymbol{q}	∨ Elim: 3, 18	
20.	$\neg r$	MP: 2, 19	

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given
4.	S	∧ Elim: 1
5.	$\neg \neg S$	Double Negation: 4
6.	q	∨ Elim: 3, 5
7.	$\neg r$	MP: 2, 6