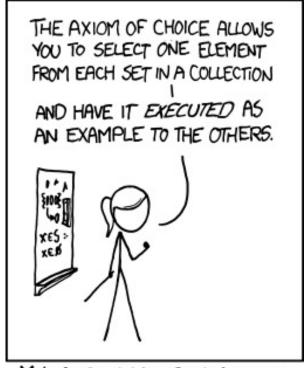
CSE 311: Foundations of Computing

Lecture 8: More inference proofs



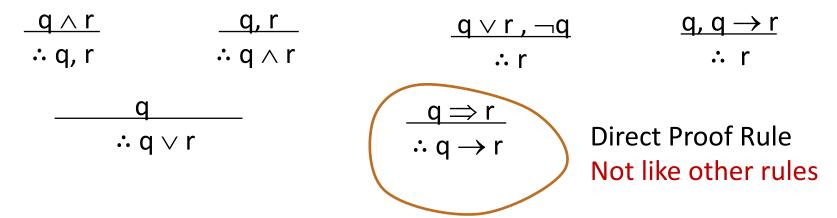
MY MATH TEACHER WAS A BIG BELIEVER IN PROOF BY INTIMIDATION.

- Given: A list of (predicate/prop. logic) formulas as facts.
- Question: What other facts can be derived from those?

List of inference rules:

- Given: A list of (predicate/prop. logic) formulas as facts.
- Question: What other facts can be derived from those?

List of inference rules:



Example: Show that s follows from q, $q \rightarrow r$, and $r \rightarrow s$

- Given: A list of (predicate/prop. logic) formulas as facts.
- Question: What other facts can be derived from those?

List of inference rules:

Example: Show that s follows from q, $q \rightarrow r$, and $r \rightarrow s$

- 1. q Given
- 2. $q \rightarrow r$ Given
- 3. $r \rightarrow s$ Given
- 4.
- 5.

- Given: A list of (predicate/prop. logic) formulas as facts.
- Question: What other facts can be derived from those?

List of inference rules:

Example: Show that s follows from q, $q \rightarrow r$, and $r \rightarrow s$

- 1. q Given
- 2. $q \rightarrow r$ Given
- 3. $r \rightarrow s$ Given
- 4. r MP: 1, 2
- 5. **S** MP: 3, 4

To Prove An Implication: $A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" $A \Rightarrow B$ for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

To Prove An Implication: $A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" $A \Rightarrow B$ for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

Example: Prove $q \rightarrow (q \lor r)$.

To Prove An Implication: $A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" $A \Rightarrow B$ for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

Example: Prove $q \rightarrow (q \lor r)$.

proof subroutine

2. $q \vee r$ Intro \vee : 1

3.
$$q \rightarrow (q \lor r)$$

Direct Proof Rule

To Prove An Implication: $A \rightarrow B$ (cont.)

 A template for the application of the direct proof rule:

```
Given
1. (...)
2. (...) Given
3. (...) Inferred fact
4. (...) Inferred fact
   5.1 A Assumption
   5.2 (...) Inferred fact
   5.3 (...) Inferred fact
   5.4 B Inferred fact
5. A \rightarrow B Direct proof rule
6. (...) Inferred fact
```

Possible to have nested direct proof rules

Show that $q \rightarrow s$ follows from r and $(q \land r) \rightarrow s$

- 1. *r* Given
- 2. $(q \wedge r) \rightarrow s$ Given

3.

```
1. r Given
2. (q \wedge r) \rightarrow s Given
3.1. q Assumption
3.2.
3.3.
```

```
1. r Given
2. (q \wedge r) \rightarrow s Given
3.1. q Assumption
3.2. q \wedge r Intro \wedge: 1, 3.1
3.3.
```

```
1. r Given
2. (q \wedge r) \rightarrow s Given
3.1. q Assumption
3.2. q \wedge r Intro \wedge: 1, 3.1
3.3. s MP: 2, 3.2
3.
```

Show that $q \rightarrow s$ follows from r and $(q \land r) \rightarrow s$

2.
$$(q \wedge r) \rightarrow s$$
 Given

This is a proof of
$$q \to s$$
 3.1. q Assumption 3.2. $q \land r$ Intro \land : 1, 3.1 3.3. s MP: 2, 3.2

3. $q \rightarrow s$ Direct Proof Rule

If we know q is true...

Then, we've shown
s is true

Prove: $(q \land r) \rightarrow (q \lor r)$

-There MUST be an application of the Direct Proof Rule (or an equivalence) to prove this implication.

Where do we start? We have no givens...

Prove: $(q \wedge r) \rightarrow (q \vee r)$

Prove: $(q \wedge r) \rightarrow (q \vee r)$

1.1.
$$q \wedge r$$

1.2. *q*

1.3. $q \vee r$

1. $(q \land r) \rightarrow (q \lor r)$

Assumption

Elim ∧: **1.1**

Intro ∨: **1.2**

Direct Proof Rule

Lecture 8 Activity

- You will be assigned to breakout rooms. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF
- Given: $p \lor q$, $(r \land s) \rightarrow \neg q$, r.
- Show: $s \rightarrow p$ using inference rules
- Hint: You will need one Direct Proof Rule

Then fill out the poll everywhere for Activity Credit!

Go to pollev.com/thomas311 and login with your UW identity

Overview over inference rules:

https://courses.cs.washington.edu/courses/cse311/21sp/resources/inferencesPoster.pdf

Prove: $((q \rightarrow r) \land (r \rightarrow s)) \rightarrow (q \rightarrow s)$

Prove:
$$((\mathbf{q} \to \mathbf{r}) \land (\mathbf{r} \to \mathbf{s})) \to (\mathbf{q} \to \mathbf{s})$$

1.1. $(\mathbf{q} \to \mathbf{r}) \land (\mathbf{r} \to \mathbf{s})$ Assumption
1.2.
1.3.

1.4.1.
1.4.2.
1.4.3.
1.4. $\mathbf{q} \to \mathbf{s}$

1. $((\mathbf{q} \to \mathbf{r}) \land (\mathbf{r} \to \mathbf{s})) \to (\mathbf{q} \to \mathbf{s})$ Direct Proof Rule

Prove:
$$((q \rightarrow r) \land (r \rightarrow s)) \rightarrow (q \rightarrow s)$$

1.1.
$$(q \rightarrow r) \land (r \rightarrow s)$$
Assumption1.2. $q \rightarrow r$ \land Elim: 1.11.3. $r \rightarrow s$ \land Elim: 1.1

1.2.
$$q \rightarrow r$$
 \wedge Elim: 1.1

1.3.
$$r \rightarrow s$$
 \wedge Elim: 1.1

- 1.4.1.
 - 1.4.2.

1.4.3.
$$q \rightarrow s$$

1.
$$((q \rightarrow r) \land (r \rightarrow s)) \rightarrow (q \rightarrow s)$$
 Direct Proof Rule

Prove:
$$((q \rightarrow r) \land (r \rightarrow s)) \rightarrow (q \rightarrow s)$$

1.1.
$$(q \rightarrow r) \land (r \rightarrow s)$$
 Assumption
1.2. $q \rightarrow r$ \land Elim: 1.1
1.3. $r \rightarrow s$ \land Elim: 1.1

1.2.
$$q \rightarrow r$$
 \wedge Elim: 1.1

1.3.
$$r \rightarrow s$$
 \wedge Elim: 1.1

- 1.4.1. *q* Assumption
 - 1.4.2.
- 1.4.3.

$$1.4. \quad q \rightarrow s$$

Direct Proof Rule

1.
$$((q \rightarrow r) \land (r \rightarrow s)) \rightarrow (q \rightarrow s)$$
 Direct Proof Rule

Prove:
$$((q \rightarrow r) \land (r \rightarrow s)) \rightarrow (q \rightarrow s)$$

1.1.
$$(q \rightarrow r) \land (r \rightarrow s)$$
 Assumption
1.2. $q \rightarrow r$ \land Elim: 1.1
1.3. $r \rightarrow s$ \land Elim: 1.1

1.2.
$$q \rightarrow r$$
 \wedge Elim: 1.1

1.3.
$$r \rightarrow s$$
 \wedge Elim: 1.1

1.4.1.
$$q$$
 Assumption

1.4.3.

1.4.
$$q \rightarrow s$$
 Direct Proof Rule

 $((q \rightarrow r) \land (r \rightarrow s)) \rightarrow (q \rightarrow s)$ Direct Proof Rule

Prove:
$$((q \rightarrow r) \land (r \rightarrow s)) \rightarrow (q \rightarrow s)$$

1.1.
$$(q \rightarrow r) \land (r \rightarrow s)$$
 Assumption
1.2. $q \rightarrow r$ \land Elim: 1.1
1.3. $r \rightarrow s$ \land Elim: 1.1
1.4.1. q Assumption
1.4.2. r MP: 1.2, 1.4.1
1.4.3. s MP: 1.3, 1.4.2

Direct Proof Rule

 $((q \rightarrow r) \land (r \rightarrow s)) \rightarrow (q \rightarrow s)$ Direct Proof Rule

One General Proof Strategy

- 1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

Inference Rules for Quantifiers: First look

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c|c}
 & \forall x \ P(x) \\
 & \therefore \ P(a) \ \text{for any a}
\end{array}$$

Let a be arbitrary*"...P(a)

∴ ∀x P(x)

* in the domain of P

 $\exists x P(x)$

∴ P(c) for some special** c

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW name!

Predicate Logic Proofs

- Can use
 - Predicate logic inference rules whole formulas only
 - Predicate logic equivalences (De Morgan's)
 even on subformulas
 - Propositional logic inference rules whole formulas only
 - Propositional logic equivalences
 even on subformulas

$$\begin{array}{c}
P(c) \text{ for some c} \\
\therefore \quad \exists x P(x)
\end{array}$$

$$\frac{\forall x P(x)}{P(x) \text{ for any } x}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

The main connective is implication so Direct Proof Rule seems good

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c}
\forall x \ P(x) \\
\therefore \ P(a) \text{ for any } a
\end{array}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.5.
$$\exists x P(x)$$

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c}
\forall x \ P(x) \\
\therefore \ P(a) \text{ for any } a
\end{array}$$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.5. $\exists x P(x)$

Intro ∃: ?

That requires P(c) for some c.

$$\frac{P(c) \text{ for some } c}{\therefore \exists x P(x)}$$

$$\begin{array}{c}
\forall x \ P(x) \\
\therefore P(a) \text{ for any } a
\end{array}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

1.1.
$$\forall x P(x)$$
 Assumption
1.2. Let a be an object.
1.3. $P(a)$ Elim \forall : 1.1

We could have picked any name or domain expression here.

1.5.
$$\exists x P(x)$$

Intro ∃: (?)

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c}
\forall x \ P(x) \\
\therefore \ P(a) \text{ for any } a
\end{array}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

No holes. Just need to clean up.

1.1.
$$\forall x P(x)$$
 Assumption

1.2. Let α be an object.

1.3. P(a) Elim \forall : **1.1**

1.5.
$$\exists x P(x)$$
 Intro \exists : **1.3**

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c}
\forall x \ P(x) \\
\Rightarrow P(a) \text{ for any } a
\end{array}$$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$ Assumption

1.2. Let α be an object.

1.3. P(a) Elim \forall : **1.1**

1.4. $\exists x P(x)$ Intro \exists : **1.3**

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof Rule

Working forwards as well as backwards:

In applying "Intro ∃" rule we didn't know what expression we might be able to prove P(c) for, so we worked forwards to figure out what might work.

Predicate Logic Proofs with more content

- In propositional logic we could just write down other propositional logic statements as "givens"
- Here, we also want to be able to use domain knowledge so proofs are about something specific
- Example: Domain of Discourse Integers
- Given the basic properties of arithmetic on integers, define:

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$

A Not so Odd Example

Domain of Discourse Integers

Predicate Definitions

Even(x) $\equiv \exists y (x = 2 \cdot y)$ Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x \; Even(x)$

A Not so Odd Example

Domain of Discourse

Integers

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x \; Even(x)$

- 1. $2 = 2 \cdot 1$ Arithmetic
- **2.** $\exists y (2 = 2 \cdot y)$ Intro $\exists : 1$
- 3. Even(2) Definition of Even: 2
- 4. $\exists x \; Even(x)$ Intro $\exists : 3$

A Prime Example

Domain of Discourse Integers

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$
Prime(x) $\equiv "x > 1$ and $x \ne a \cdot b$ for
all integers a, b with $1 < a < x"$

Prove "There is an even prime number"

A Prime Example

Domain of Discourse

Integers

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$
Prime(x) $\equiv "x > 1$ and $x \neq a \cdot b$ for
all integers a, b with $1 < a < x$ "

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

- 1. $2 = 2 \cdot 1$
- **2.** Prime(**2**)*

Arithmetic

Property of integers

^{*} Later we will further break down "Prime" using quantifiers to prove statements like this

A Prime Example

Domain of Discourse

Integers

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$
Prime(x) $\equiv "x > 1$ and $x \neq a \cdot b$ for
all integers a, b with $1 < a < x"$

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

1 .	$2 = 2 \cdot 1$	Arithmetic
2.	Prime(2)*	Property of integers
3.	$\exists y (2 = 2 \cdot y)$	Intro ∃: 1
4.	Even(2)	Defn of Even: 3
5.	Even(2) ∧ Prime(2)	Intro ∧: 2, 4
6.	$\exists x (Even(x) \land Prime(x))$	Intro ∃: 5

^{*} Later we will further break down "Prime" using quantifiers to prove statements like this

Inference Rules for Quantifiers: First look

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c|c}
 & \forall x \ P(x) \\
 & \therefore \ P(a) \ \text{for any a}
\end{array}$$

Let a be arbitrary*"...P(a)

∴ ∀x P(x)

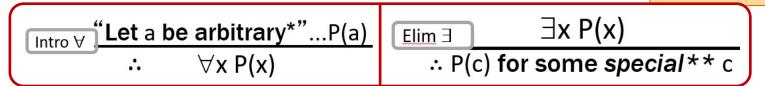
 $\exists x P(x)$

∴ P(c) for some special** c

* in the domain of P

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW name!

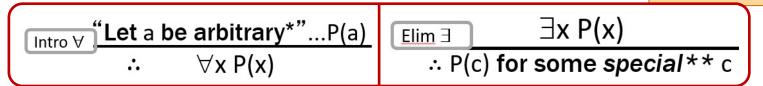
Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers



Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers



Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

- 2. Even(a) \rightarrow Even(a²)
- 3. $\forall x (Even(x) \rightarrow Even(x^2))$

Intro \forall : 1,2

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even(x)} \rightarrow \text{Even(x}^2))$

1. Let a be an arbitrary integer

2.1 Even(a)

Assumption

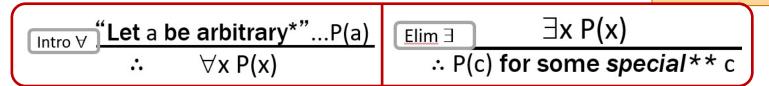
- **2.6** Even(**a**²)
- 2. Even(\mathbf{a}) \rightarrow Even(\mathbf{a}^2)
- 3. $\forall x (Even(x) \rightarrow Even(x^2))$

?

Direct proof rule

Intro \forall : 1,2

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers



Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

- 1. Let a be an arbitrary integer
 - 2.1 Even(a)

Assumption

2.2 $\exists y (a = 2y)$

Definition of Even

2.5
$$\exists y (a^2 = 2y)$$

(?)

2.6 Even(**a**²)

Definition of Even

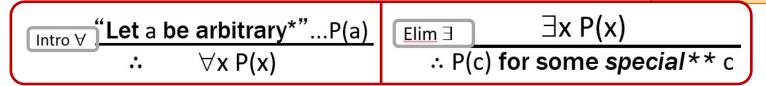
2. Even(\mathbf{a}) \rightarrow Even(\mathbf{a}^2)

Direct proof rule

3. $\forall x (Even(x) \rightarrow Even(x^2))$

Intro \forall : 1,2

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers



Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

- 1. Let a be an arbitrary integer
 - 2.1 Even(a) Assumption
 - 2.2 $\exists y (a = 2y)$ Definition of Even

2.5
$$\exists y (a^2 = 2y)$$

2.6 Even(a²)

- 2. Even(\mathbf{a}) \rightarrow Even(\mathbf{a}^2)
- 3. $\forall x (Even(x) \rightarrow Even(x^2))$

Intro \exists rule: 🕐

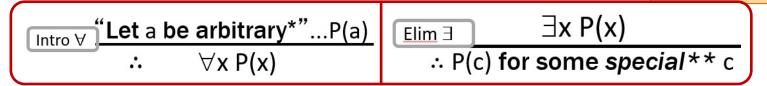
Definition of Even

Direct proof rule

Intro ∀: 1,2

Need $a^2 = 2c$ for some c

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers



Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

2.2
$$\exists y (a = 2y)$$
 Definition of Even

$$2.3 \quad a = 2b$$

2.5
$$\exists y (a^2 = 2y)$$

2. Even(
$$\mathbf{a}$$
) \rightarrow Even(\mathbf{a}^2)

3.
$$\forall x (Even(x) \rightarrow Even(x^2))$$

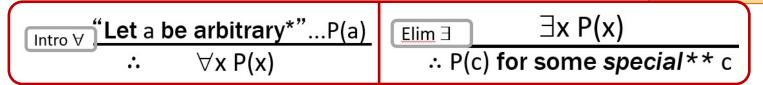
Intro
$$\exists$$
 rule: 🕐

Intro
$$\forall$$
: 1,2

Need
$$a^2 = 2c$$
 for some c

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Used $a^2 = 2c$ for $c = 2b^2$



Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

2.2
$$\exists y (a = 2y)$$
 Definition of Even

2.3
$$a = 2b$$
 Elim \exists : b special depends on a

2.4
$$a^2 = 4b^2 = 2(2b^2)$$
 Algebra

2.5
$$\exists y (a^2 = 2y)$$
 Intro \exists rule

2. Even(a)
$$\rightarrow$$
Even(a²) Direct proof rule

3.
$$\forall x (Even(x) \rightarrow Even(x^2))$$
 Intro $\forall : 1,2$

Why did we need to say that b depends on a?

There are extra conditions on using these rules:

"Let a be arbitrary*"...P(a)

$$\therefore$$
 $\forall x \ P(x)$

* in the domain of P

Elim $\exists x \ P(x)$
 \therefore P(c) for some special** c

** c has to be a NEW name.

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim \exists : b special depends on a
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Why did we need to say that b depends on a?

There are extra conditions on using these rules:

"Let a be arbitrary*"...P(a)

$$\therefore \forall x P(x)$$

* in the domain of P

Elim $\exists x P(x)$
 $\therefore P(c)$ for some special** c

** c has to be a NEW name.

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

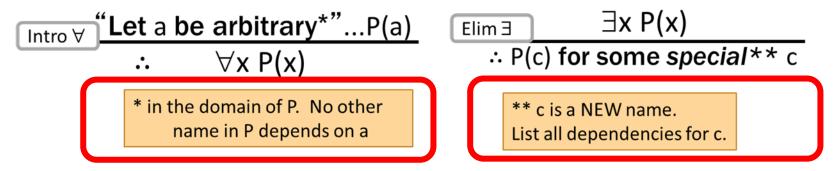
BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim \exists : b special depends on a
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Can't get rid of a since another name in the same line, b, depends on it!

Why did we need to say that b depends on a?

There are extra conditions on using these rules:



Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim \exists : b special depends on a
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Can't get rid of a since another name in the same line, b, depends on it!

Inference Rules for Quantifiers: Full version

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c|c}
 & \forall x \ P(x) \\
 & \therefore \ P(a) \ \text{for any a}
\end{array}$$

Intro ∀ Let a be arbitrary*"...P(a)

 $\forall x P(x)$

* in the domain of P. No other name in P depends on a

Elim \exists $\exists x P(x)$

∴ P(c) for some special** c

** c is a NEW name. List all dependencies for c.

English Proofs

- We often write proofs in English rather than as fully formal proofs
 - They are more natural to read

- English proofs follow the structure of the corresponding formal proofs
 - Formal proof methods help to understand how proofs really work in English...
 - ... and give clues for how to produce them.