
CSE 311: Foundations of Computing

Lecture 8:  More inference proofs



Recap from last lecture: Logical inference

• Given: A list of (predicate/prop. logic) formulas as facts.
• Question: What other facts can be derived from those?

q Ù r
∴ q, r

q, r   
∴ q Ù r 

q              x
∴ q Ú r

q Ú r , ¬q
∴ r

q, q ® r
∴ r

q Þ r
∴ q ® r Direct Proof Rule

Not like other rules

List of inference rules:
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Recap from last lecture: Logical inference

• Given: A list of (predicate/prop. logic) formulas as facts.
• Question: What other facts can be derived from those?

q Ù r
∴ q, r

q, r   
∴ q Ù r 

q              x
∴ q Ú r

q Ú r , ¬q
∴ r

q, q ® r
∴ r

q Þ r
∴ q ® r Direct Proof Rule

Not like other rules

List of inference rules:

Example: Show that s follows from q, q ® r, and r ® s
1.  q Given
2. q ® r     Given
3. r ® s  Given
4. r  MP: 1, 2
5. s MP: 3, 4



To Prove An Implication: 𝐴 → 𝐵

• We use the direct proof rule
• The “pre-requisite” A Þ B for the direct proof rule 

is a proof that “Given A, we can prove B.”
• The direct proof rule:

If you have such a proof then you can conclude        
that A ® B is true



To Prove An Implication: 𝐴 → 𝐵

• We use the direct proof rule
• The “pre-requisite” A Þ B for the direct proof rule 

is a proof that “Given A, we can prove B.”
• The direct proof rule:

If you have such a proof then you can conclude        
that A ® B is true

Example: Prove q ® (q Ú r).



To Prove An Implication: 𝐴 → 𝐵

• We use the direct proof rule
• The “pre-requisite” A Þ B for the direct proof rule 

is a proof that “Given A, we can prove B.”
• The direct proof rule:

If you have such a proof then you can conclude        
that A ® B is true

Example: Prove q ® (q Ú r).
1. 𝒒 Assumption
2.   𝒒 Ú 𝒓 Intro Ú: 1                             

3.   𝒒® (𝒒 Ú 𝒓) Direct Proof Rule

proof subroutine

Indent proof
subroutine ⇒



To Prove An Implication: 𝐴 → 𝐵 (cont.)

• A template for the application of the direct proof 
rule:

1. (…) Given
2. (…) Given
3. (…)  Inferred fact
4. (...) Inferred fact

5.1 𝐴 Assumption
5.2 (...) Inferred fact
5.3 (...) Inferred fact
5.4 𝐵 Inferred fact

5. 𝐴 → 𝐵 Direct proof rule
6. (...) Inferred fact

• Possible to have nested direct proof rules
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Proofs using the direct proof rule

Show that q ® s follows from r and (q Ù r) ® s

1.   𝒓 Given
2. (𝒒 Ù 𝒓)® 𝒔 Given

3.1. 𝒒 Assumption
3.2.   𝒒 Ù 𝒓 Intro Ù: 1, 3.1
3.3.   𝒔 MP: 2, 3.2

3.    𝒒 → 𝒔 Direct Proof Rule

This is a 
proof

of 𝒒 → 𝒔

If we know 𝒒 is true…
Then, we’ve shown     

s is true



Prove:  (q Ù r) ® (q Ú r)

Example

There MUST be an application of the
Direct Proof Rule (or an equivalence)

to prove this implication.

Where do we start?  We have no givens…
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Example

Prove:  (q Ù r) ® (q Ú r)

1.1. 𝒒 Ù 𝒓 Assumption
1.2.   𝒒 Elim Ù: 1.1
1.3.   𝒒 Ú 𝒓 Intro Ú: 1.2

1. (𝒒 ∧ 𝒓)® (𝒒 Ú 𝒓) Direct Proof Rule



Lecture 8 Activity

• You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share screen, showing this PDF 
• Given: 𝑝 ∨ 𝑞, 𝑟 ∧ 𝑠 → ¬𝑞, 𝑟.
• Show: 𝑠 → 𝑝 using inference rules
• Hint: You will need one Direct Proof Rule

Then fill out the poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login with your UW 
identity

Overview over inference rules: 
https://courses.cs.washington.edu/courses/cse311/21sp/resources/inferencesPoster.pdf

http://pollev.com/thomas311
https://courses.cs.washington.edu/courses/cse311/21sp/resources/inferencesPoster.pdf


Example

Prove:    ((q ® r) Ù (r ® s)) ® (q ® s)



Example
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1.1. 𝒒 → 𝒓 ∧ (𝒓 → 𝒔) Assumption
1.2.
1.3.

1.4.1.
1.4.2.
1.4.3.

1.4. 𝒒 → 𝒔
1. 𝒒 → 𝒓 ∧ 𝒓 → 𝒔 → (𝒒 → 𝒔) Direct Proof Rule
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Example

Prove:    ((q ® r) Ù (r ® s)) ® (q ® s)

1.1. 𝒒 → 𝒓 ∧ (𝒓 → 𝒔) Assumption
1.2. 𝒒 → 𝒓 ∧ Elim: 1.1
1.3. 𝒓 → 𝒔 ∧ Elim: 1.1

1.4.1. 𝒒 Assumption
1.4.2. 𝒓 MP: 1.2, 1.4.1
1.4.3. 𝒔 MP: 1.3, 1.4.2

1.4. 𝒒 → 𝒔 Direct Proof Rule

1. 𝒒 → 𝒓 ∧ 𝒓 → 𝒔 → (𝒒 → 𝒔) Direct Proof Rule



One General Proof Strategy

1. Look at the rules for introducing connectives to 
see how you would build up the formula you want 
to prove from pieces of what is given

2. Use the rules for eliminating connectives to break 
down the given formulas so that you get the 
pieces you need to do 1.

3. Write the proof beginning with what you figured 
out for 2 followed by 1.



Inference Rules for Quantifiers: First look

* in the domain of P ** By special, we mean that c is a 
name for a value where P(c) is true. 
We can’t use anything else about that 
value, so c has to be a NEW name!

"x P(x)        
∴ P(a) for any a

“Let a be arbitrary*”...P(a)
∴ "x P(x)

P(c) for some c
∴ $x P(x)

Intro $ Elim "

Intro " $x P(x)
∴ P(c) for some special** c

Elim $



Predicate Logic Proofs

• Can use
– Predicate logic inference rules

whole formulas only

– Predicate logic equivalences (De Morgan’s)
even on subformulas

– Propositional logic inference rules
whole formulas only

– Propositional logic equivalences
even on subformulas



My First Predicate Logic Proof

Prove "x P(x) ® $x P(x)

5. "𝒙 𝑷 𝒙 ® $𝒙 𝑷(𝒙)
The main connective is implication
so Direct Proof Rule seems good 



My First Predicate Logic Proof

Prove "x P(x) ® $x P(x)

1. "𝒙 𝑷 𝒙 ® $𝒙 𝑷 𝒙 Direct Proof Rule

1.1. "𝒙 𝑷 𝒙 Assumption

1.5. $𝒙 𝑷 𝒙

We need an $ we don’t have 
so “intro $” rule makes sense



My First Predicate Logic Proof

Prove "x P(x) ® $x P(x)

1. "𝒙 𝑷 𝒙 ® $𝒙 𝑷 𝒙 Direct Proof Rule

1.1. "𝒙 𝑷 𝒙 Assumption

1.5. $𝒙 𝑷 𝒙 Intro $:

We need an $ we don’t have 
so “intro $” rule makes sense 

That requires P(c) 
for some c.  



My First Predicate Logic Proof

Prove "x P(x) ® $x P(x)

1. "𝒙 𝑷 𝒙 ® $𝒙 𝑷 𝒙 Direct Proof Rule

1.1. "𝒙 𝑷 𝒙 Assumption
1.2. Let 𝒂 be an object.
1.3. 𝑷(𝒂) Elim ": 1.1

1.5. $𝒙 𝑷 𝒙 Intro $:

We could have picked any name
or domain expression here.  



My First Predicate Logic Proof

Prove "x P(x) ® $x P(x)

1. "𝒙 𝑷 𝒙 ® $𝒙 𝑷 𝒙 Direct Proof Rule

1.1. "𝒙 𝑷 𝒙 Assumption
1.2. Let 𝒂 be an object.
1.3. 𝑷(𝒂) Elim ": 1.1

1.5. $𝒙 𝑷 𝒙 Intro $: 1.3

No holes.  Just need to clean up. 



My First Predicate Logic Proof

Prove "x P(x) ® $x P(x)

1. "𝒙 𝑷 𝒙 ® $𝒙 𝑷 𝒙 Direct Proof Rule

1.1. "𝒙 𝑷 𝒙 Assumption
1.2. Let 𝒂 be an object.
1.3. 𝑷(𝒂) Elim ": 1.1
1.4. $𝒙 𝑷 𝒙 Intro $: 1.3

Working forwards as well as backwards: 
In applying “Intro $” rule we didn’t know what expression
we might be able to prove P(c) for, so we worked forwards
to figure out what might work.



Predicate Logic Proofs with more content

• In propositional logic we could just write down 
other propositional logic statements as “givens”

• Here, we also want to be able to use domain 
knowledge so proofs are about something specific

• Example:

• Given the basic properties of arithmetic on integers, 
define:

Even(x) º $y (x = 2⋅y)
Odd(x) º $y (x = 2⋅y + 1)

Predicate Definitions

Integers
Domain of Discourse



A Not so Odd Example

Even(x) º $y (x = 2⋅y)
Odd(x) º $y (x = 2⋅y + 1)

Predicate Definitions
Integers

Domain of Discourse

Formally: prove  $x Even(x)
Prove  “There is an even number”



A Not so Odd Example

Even(x) º $y (x = 2⋅y)
Odd(x) º $y (x = 2⋅y + 1)

Predicate Definitions
Integers

Domain of Discourse

Formally: prove  $x Even(x)
Prove  “There is an even number”

1. 2 = 2⋅1 Arithmetic
2. $y (2 = 2⋅y) Intro $: 1
3. Even(2) Definition of Even: 2
4. $x Even(x) Intro $: 3



A Prime Example

Even(x) º $y (x = 2⋅y)
Odd(x) º $y (x = 2⋅y + 1)
Prime(x) º “x > 1 and x≠a⋅b for 

all integers a, b with 1<a<x”

Predicate Definitions
Integers

Domain of Discourse

Prove  “There is an even prime number”



A Prime Example

Even(x) º $y (x = 2⋅y)
Odd(x) º $y (x = 2⋅y + 1)
Prime(x) º “x > 1 and x≠a⋅b for 

all integers a, b with 1<a<x”

Predicate Definitions
Integers

Domain of Discourse

1. 2 = 2⋅1 Arithmetic
2. Prime(2) Property of integers

Prove  “There is an even prime number”
Formally: prove  $x (Even(x) Ù Prime(x))

*

* Later we will further break down “Prime” using quantifiers to prove statements like this



A Prime Example

Even(x) º $y (x = 2⋅y)
Odd(x) º $y (x = 2⋅y + 1)
Prime(x) º “x > 1 and x≠a⋅b for 

all integers a, b with 1<a<x”

Predicate Definitions
Integers

Domain of Discourse

1. 2 = 2⋅1 Arithmetic
2. Prime(2) Property of integers
3. $y (2 = 2⋅y) Intro $: 1
4. Even(2) Defn of Even: 3
5. Even(2) Ù Prime(2) Intro Ù: 2, 4
6. $x (Even(x) Ù Prime(x)) Intro $: 5

Prove  “There is an even prime number”
Formally: prove  $x (Even(x) Ù Prime(x))

* Later we will further break down “Prime” using quantifiers to prove statements like this

*



Inference Rules for Quantifiers: First look

* in the domain of P ** By special, we mean that c is a 
name for a value where P(c) is true. 
We can’t use anything else about that 
value, so c has to be a NEW name!

"x P(x)        
∴ P(a) for any a

“Let a be arbitrary*”...P(a)
∴ "x P(x)

P(c) for some c
∴ $x P(x)

Intro $ Elim "

Intro " $x P(x)
∴ P(c) for some special** c

Elim $



Even and Odd

Prove: “The square of every even number is even.”
Formal proof of:  "x (Even(x) ® Even(x2))

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

3.   "x (Even(x)®Even(x2))



Even and Odd

Prove: “The square of every even number is even.”
Formal proof of:  "x (Even(x) ® Even(x2))

1. Let a be an arbitrary integer

2.   Even(a)®Even(a2)
3.   "x (Even(x)®Even(x2))         Intro ": 1,2

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”
Formal proof of:  "x (Even(x) ® Even(x2))

1. Let a be an arbitrary integer
2.1   Even(a) Assumption

2.6  Even(a2)
2.   Even(a)®Even(a2) Direct proof rule
3.   "x (Even(x)®Even(x2))         Intro ": 1,2

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”
Formal proof of:  "x (Even(x) ® Even(x2))

1. Let a be an arbitrary integer
2.1   Even(a) Assumption
2.2 ∃y (a = 2y) Definition of Even

2.5 ∃y (a2 = 2y)
2.6  Even(a2) Definition of Even

2.   Even(a)®Even(a2) Direct proof rule
3.   "x (Even(x)®Even(x2))         Intro ": 1,2

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”
Formal proof of:  "x (Even(x) ® Even(x2))

1. Let a be an arbitrary integer
2.1   Even(a) Assumption
2.2 ∃y (a = 2y) Definition of Even

2.5 ∃y (a2 = 2y) Intro $ rule: 
2.6  Even(a2) Definition of Even

2.   Even(a)®Even(a2) Direct proof rule
3.   "x (Even(x)®Even(x2))         Intro ": 1,2

Need a2 = 2c
for some c

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”
Formal proof of:  "x (Even(x) ® Even(x2))

1. Let a be an arbitrary integer
2.1   Even(a) Assumption
2.2 ∃y (a = 2y) Definition of Even
2.3   a = 2b Elim $: b special depends on a

2.5 ∃y (a2 = 2y) Intro $ rule: 
2.6  Even(a2) Definition of Even

2.   Even(a)®Even(a2) Direct proof rule
3.   "x (Even(x)®Even(x2))         Intro ": 1,2

Need a2 = 2c
for some c

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”
Formal proof of:  "x (Even(x) ® Even(x2))

1. Let a be an arbitrary integer
2.1   Even(a) Assumption
2.2 ∃y (a = 2y) Definition of Even
2.3   a = 2b Elim $: b special depends on a
2.4   a2 = 4b2 = 2(2b2)     Algebra
2.5 ∃y (a2 = 2y) Intro $ rule
2.6  Even(a2) Definition of Even

2.   Even(a)®Even(a2) Direct proof rule
3.   "x (Even(x)®Even(x2))         Intro ": 1,2

Used a2 = 2c for c=2b2

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 



Why did we need to say that b depends on a?  
There are extra conditions on using these rules:

Over integer domain: "x $y (y ≥ x) is True but $y"x (y ≥ x) is False

1. "x $y (y ≥ x) Given
2. Let a be an arbitrary integer
3. $y (y ≥ a) Elim ": 1
4. b ≥	a Elim $: b special depends on a
5. "x (b ≥ x)                 Intro ": 2,4
6. $y"x (y ≥ x)             Intro $ : 5

BAD “PROOF”
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Over integer domain: "x $y (y ≥ x) is True but $y"x (y ≥ x) is False

1. "x $y (y ≥ x) Given
2. Let a be an arbitrary integer
3. $y (y ≥ a) Elim ": 1
4. b ≥	a Elim $: b special depends on a
5. "x (b ≥ x)                 Intro ": 2,4
6. $y"x (y ≥ x)             Intro $ : 5

BAD “PROOF”

Can’t get rid of a since another name in the same line, b, depends on it!



Why did we need to say that b depends on a?  
There are extra conditions on using these rules:

Over integer domain: "x $y (y ≥ x) is True but $y"x (y ≥ x) is False

1. "x $y (y ≥ x) Given
2. Let a be an arbitrary integer
3. $y (y ≥ a) Elim ": 1
4. b ≥	a Elim $: b special depends on a
5. "x (b ≥ x)                 Intro ": 2,4
6. $y"x (y ≥ x)             Intro $ : 5

BAD “PROOF”

Can’t get rid of a since another name in the same line, b, depends on it!



Inference Rules for Quantifiers: Full version

"x P(x)        
∴ P(a) for any a

P(c) for some c
∴ $x P(x)

Intro $ Elim "

* in the domain of P.  No other   
name in P depends on a 

** c is a NEW name. 
List all dependencies for c.

“Let a be arbitrary*”...P(a)
∴ "x P(x)

Intro " $x P(x)
∴ P(c) for some special** c

Elim $



English Proofs

• We often write proofs in English rather than 
as fully formal proofs
– They are more natural to read

• English proofs follow the structure of the 
corresponding formal proofs
– Formal proof methods help to understand how 

proofs really work in English...
... and give clues for how to produce them.


