CSE 311.: Foundations of Computing

Lecture 8: More inference proofs

THE AXIOM OF CHOICE ALLOWS
You To SELECT ONE ELEMENT
FROM EACH SET rN‘Pa COLLECTiON

AND HAVE IT” EXECUTED RS
AN EXAMPLE T0 THE OTHERS.
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MY MATH TEACHER WAS A BIG
BELIEVER IN PROOF BY INTIMIDATION.




Recap from last lecture: Logical inference

* Given: A list of (predicate/prop. logic) formulas as facts.
 Question: What other facts can be derived from those?

List of inference rules:

QAT Q.r gvr,—q Q. q—r
~q,r SQAT ST ST
g
LqQVr Direct Proof Rule

Not like other rules
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Recap from last lecture: Logical inference

* Given: A list of (predicate/prop. logic) formulas as facts.
 Question: What other facts can be derived from those?

List of inference rules:

QAT Q.r gvr,—q Q. q—r
~q,r SQAT ST ST
g
LqQVr Direct Proof Rule

Not like other rules

Example: Show that s follows fromq,qg > r,andr —> s

1. q Given
2. q—or Given
3. r—s Given
4. r MP: 1, 2
5. S MP: 3, 4



To Prove An Implication: A - B

 We use the direct proof rule

 The “pre-requisite” A = B for the direct proof rule
is a proof that “Given A, we can prove B.”

 The direct proof rule:

If you have such a proof then you can conclude
that A — B is true
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Example: Prove q — (g v r).



To Prove An Implication: A - B

 We use the direct proof rule

 The “pre-requisite” A = B for the direct proof rule
is a proof that “Given A, we can prove B.”

 The direct proof rule:

If you have such a proof then you can conclude
that A — B is true

Example: Prove g — (q Vv r). oroof subroutine
Indent proof:> 1. q Assumption
subroutine 2. gvr Intro v: 1

3. g—>(qvr) Direct Proof Rule



To Prove An Implication: A — B (cont.)

* A template for the application of the direct proof
rule:

Given

Given

Inferred fact

Inferred fact
51A Assumption
5.2(...) Inferred fact
5.3(...) Inferred fact
54 B Inferred fact

5.4 - B Direct proof rule

6. (...) Inferred fact

PN E

* Possible to have nested direct proof rules



Proofs using the direct proof rule

Show that q — s follows fromrand (g Ar) > s



Proofs using the direct proof rule

Show that q — s follows fromrand (g Ar) > s

1. r Given

2. (gqAr)—s Given
3.
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Proofs using the direct proof rule

Show that q — s follows fromrand (g Ar) > s

1. r Given
2. (gqAr)—s Given

3.1. g Assumption
3.2. grr Intron:]l, 3.1
33. s MP: 2, 3.2



Proofs using the direct proof rule

Show that q — s follows fromrand (g Ar) > s

1. r Given
2. (gqAr)—s Given
This is a (3.1. q Assumption A _
roof If we know g is true...
proo 3.2. gAr7r Intron:1,3.1 Then, we've shown
ofqg—> s

3.3. S MP: 2,3.2 ) s is true
3. g—S Direct Proof Rule




Example

Prove: q VT

There MUST be an application of the
Direct Proof Rule (or an equivalence)
to prove this implication.

Where do we start? We have no givens...



Example

Prove: (qAr)—>(qVvr)



Example

Prove: (qAr)—>(qVvr)

1.1. g, 7 Assumption
1.2. g Elim A: 1.1
1.3. qvr Intro v: 1.2

1. (qAr)—>(qvr) Direct Proof Rule



Lecture 8 Activity

* You will be assigned to breakout rooms. Please:

* Introduce yourself

* Choose someone to share screen, showing this PDF
« Given:pVvgqg,(rAs)— —gq,r.

* Show: s — p using inference rules

* Hint: You will need one Direct Proof Rule

Then fill out the poll everywhere for Activity Credit!
Go to and login with your UW
identity

Overview over inference rules:
https://courses.cs.washington.edu/courses/cse311/21sp/resources/inferencesPoster.pdf



http://pollev.com/thomas311
https://courses.cs.washington.edu/courses/cse311/21sp/resources/inferencesPoster.pdf

Example

Prove: ((g—>r) A(r—>5S))—(g—S)



Example

Prove: ((g—>r) A(r—>5S))—(g—S)

1.1. (g —>7r)A(r—s) Assumption
1.2.
1.3.

1.4.1.
1.4.2.
1.4.3.

1.4. qg—s
1. ((q >r)A@r- s)) — (q — s) Direct Proof Rule



Example

Prove: ((g—>r) A(r—>5S))—(g—S)

1.1. (g —>7r)A(r—s) Assumption
1.2. g-—r A Elim: 1.1
1.3. r—s A Elim: 1.1

1.4.1.
1.4.2.
1.4.3.

1.4. qg—s
1. ((q >r)A@r- s)) — (q — s) Direct Proof Rule



Example

Prove: ((g—>r) A(r—>5S))—(g—S)

1.1. (g —>7r)A(r—s) Assumption

1.2. g-—r A Elim: 1.1

1.3. r—s A Elim: 1.1
1.41. ¢q Assumption
1.4.2.
1.4.3.

1.4. qg—s Direct Proof Rule

1. ((q >r)A@r- s)) — (q — s) Direct Proof Rule



Example

Prove: ((g—>r) A(r—>5S))—(g—S)

1.1. (g —>7r)A(r—s) Assumption

1.2. g-—r A Elim: 1.1

1.3. r—s A Elim: 1.1
1.41. ¢q Assumption
1.42. r MP:1.2,14.1
1.4.3.

1.4. qg—s Direct Proof Rule

1. ((q >r)A@r- s)) — (q — s) Direct Proof Rule



Example

Prove: ((g—>r) A(r—>5S))—(g—S)

1.1. (g —>7r)A(r—s) Assumption

1.2. g-—r A Elim: 1.1

1.3. r—s A Elim: 1.1
1.41. ¢q Assumption
1.42. r MP:1.2,14.1
1.43. s MP: 1.3,1.4.2

1.4. qg—s Direct Proof Rule

1. ((q >r)A@r- s)) — (q — s) Direct Proof Rule



One General Proof Strategy

1.

Look at the rules for introducing connectives to
see how you would build up the formula you want
to prove from pieces of what is given

Use the rules for eliminating connectives to break
down the given formulas so that you get the

pieces you heed to do 1.

Write the proof beginning with what you figured
out for 2 followed by 1.



Inference Rules for Quantifiers: First look

P(c) for some ¢ . Vx P(x)
Intro 3 Elim V
Ix P(x) ~. P(a) for any a
v Let a be arbitrary*”...P(a) [Eim3 Ix P(x)
Vx P(x) = P(c) for some special** c
S lilS CeEl G ** By special, we mean thatcis a

name for a value where P(c) is true.
We can’t use anything else about that
value, so c has to be a NEW name!




Predicate Logic Proofs

 Can use
— Predicate logic inference rules

whole formulas only

— Predicate logic equivalences (De Morgan'’s)

even on subformulas

— Propositional logic inference rules

whole formulas only

— Propositional logic equivalences

even on subformulas



P(c) for some c

My First Predicate Logic Proof e T
. Vx P(x)
Prove Vx P(x) — 3x P(x) "~ FaliCranyE

The main connective is implication

5. Vx P(x)— 3x P(x) @ so Direct Proof Rule seems good



P(c) for some c

My First Predicate Logic Proof e T
. Vx P(x)
Prove Vx P(x) — 3x P(x) "~ FaliCranyE

1.1. VxP(x) Assumption

We need an 3 we don’t have
so “intro 34” rule makes sense

15. xPx) @

1. Vx P(x)—> 3dx P(x) Direct Proof Rule



P(c) for some c

My First Predicate Logic Proof e T
. Vx P(x)
Prove Vx P(x) — 3x P(x) "~ FaliCranyE

1.1. VxP(x) Assumption

We need an 3 we don’t have
so “intro 3" rule makes sense

That requires P
15, PR Inron@ IviesPo
1. Vx P(x)—> 3dx P(x) Direct Proof Rule



P(c) for some c

My First Predicate Logic Proof T I P(Y)
Elim V VX P(X)
Prove Vx P(x) — 3x P(x) "~ FaliCranyE
1.1. VxP(x) Assumption
1.2. Let a be an object.
1.3. P(a) Elim V: 1.1

We could have picked any name
or domain expression here.

1.5. dxP(x) Intro 3: @
1. Vx P(x)—» dx P(x) Direct Proof Rule



P(c) for some c

My First Predicate Logic Proof e T
e Vx P(x)
Prove Vx P(x) — 3x P(x) "~ FaliCranyE

No holes. Just need to clean up.

1.1. VxP(x) Assumption
1.2. Let a be an object.

1.3. P(a) ElimV:1.1

1.5. dx P(x) Intro 3: 1.3

1. Vx P(x)—> 3dx P(x) Direct Proof Rule



P(c) for some c

My First Predicate Logic Proof T 3P
Elim V VX P(X)
Prove Vx P(x) — 3x P(x) "~ FaliCranyE
1.1. VxP(x) Assumption
1.2. Let a be an object.
1.3. P(a) Elim V: 1.1
1.4. dx P(x) Intro 3: 1.3

1. Vx P(x)—» dx P(x) Direct Proof Rule

Working forwards as well as backwards:

In applying “Intro 3” rule we didn’t know what expression
we might be able to prove P(c) for, so we worked forwards
to figure out what might work.



Predicate Logic Proofs with more content

* |n propositional logic we could just write down
other propositional logic statements as “givens”

* Here, we also want to be able to use domain
knowledge so proofs are about something specific

* Example: Domain of Discourse
Integers

* Given the basic properties of arithmetic on integers,
define:

Predicate Definitions
Even(x) =3y (x = 2-y)
pdd(x) =dy (x=2'y+ 1))




A Not so Odd Example

Domain of Discourse| |Predicate Definitions
Integers ) |Even(x)=3dy (x = 2-y)
Odd(x) =3y (x=2-y+1)

Prove “There is an even number”
Formally: prove dx Even(x)



A Not so Odd Example

Domain of Discourse| |Predicate Definitions
Integers ) |Even(x)=3dy (x = 2-y)
Odd(x) =3y (x=2-y+1)

Prove “There is an even number”
Formally: prove dx Even(x)

1. 2=2-1 Arithmetic

2. dy (2=2y) Introd:1

3. Even(2) Definition of Even: 2
4, dx Even(x) Intro 4: 3



A Prime Example

Domain of Discourse| [Predicate Definitions
Integers

Even(x) =3y (x = 2-y)

Odd(x)=3dy (x=2-y + 1)

Prime(x) = “x > 1 and x#a-b for
\_ all integers a, b with 1<a<x” /

Prove “There is an even prime number”



A Prime Example

Domain of Discourse Predicate Definitions
Integers

Even(x) =3y (x = 2-y)

Odd(x)=3dy (x=2-y + 1)

Prime(x) = “x > 1 and x#a-b for
\_ all integers a, b with 1<a<x” /

Prove “There is an even prime number”
Formally: prove dx (Even(x) A Prime(x))

1. 2=2-1 Arithmetic
2. Prime(2)* Property of integers

* Later we will further break down “Prime” using quantifiers to prove statements like this



A Prime Example

Domain of Discourse Predicate Definitions
Integers

Even(x) =3y (x = 2-y)

Odd(x)=3dy (x=2-y + 1)

Prime(x) = “x > 1 and x#a-b for

\_ all integers a, b with 1<a<x” /

Prove “There is an even prime number”
Formally: prove dx (Even(x) A Prime(x))

1. 2=2-1 Arithmetic

2. Prime(2)* Property of integers
3. dy (2= 2-y) Intro 3: 1

4, Even(2) Defn of Even: 3

5. Even(2) A Prime(2) Intro A: 2, 4

6. dx (Even(x) A Prime(x)) Intro 3: 5

* Later we will further break down “Prime” using quantifiers to prove statements like this



Inference Rules for Quantifiers: First look

P(c) for some ¢ . Vx P(x)
Intro 3 Elim V
Ix P(x) ~. P(a) for any a
v Let a be arbitrary*”...P(a) [Eim3 Ix P(x)
Vx P(x) = P(c) for some special** c
S lilS CeEl G ** By special, we mean thatcis a

name for a value where P(c) is true.
We can’t use anything else about that
value, so c has to be a NEW name!




Even(x) =3y (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——-{'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

3. Vx (Even(x)—>Even(x?)) @



Even(x) =3y (x=2y)
Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

——-{'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2. Even(a)—Even(a?) @
3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) =3y (x=2y)
Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Elim 3 dx P(x)
e o e i W Cirect proot ruie =~ P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer
2.1 Even(a) Assumption

2.6 Even(a?) @

2. Even(a)—Even(a?) Direct proof rule
3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) =3y (x=2y)
Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

——-{'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption

2.2 dy(a=2y) Definition of Even

2.5 3Jy (a?=2y) @

2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) =3y (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——-{'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 dy(a=2y) Definition of Even
2.5 3Jy (a?=2y) Intro 3 rule: @ E?Zi::czc
2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) =3y (x=2y)
Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——-{'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 dy(a=2y) Definition of Even
2.3 a=2b Elim 3: b special depends on a
2.5 3Jy (a?=2y) Intro 3 rule: @ E?Zi::czc
2.6 Even(a?) Definition of Even

2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) =3y (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——-{'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 dy(a=2y) Definition of Even
2.3 a=2b Elim 3: b special depends on a
2.4 a’=4b’=2(2b?) Algebra
2.5 3y (a?=2y) Intro J rule [ Useda’ = 2cforc=2b°
2.6 Even(a?) Definition of Even

2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Why did we need to say that b depends on a?

There are extra conditions on using these rules:

~—_{Let a be arbitrary*”...P(a) [Eiim3 IxP(x)
Vx P(x) = P(c) for some special** c
*in the domain of P ** c has tobe a NEW name.

Over integer domain: Vx dy (y = x) is True but dyVx (y = x) is False

BAD “PROOF”

1. Vxdy(y=x) Given

2. Let a be an arbitrary integer

3. 3dy(y=a) Elim V: 1

4. b=>a Elim 3: b special depends on a
5. Vx(b=x) Intro V: 2,4

6. dyVx(y=x) Introd: 5



Why did we need to say that b depends on a?

There are extra conditions on using these rules:

~—_{Let a be arbitrary*”...P(a) [Eiim3 IxP(x)
Vx P(x) = P(c) for some special** c
*in the domain of P ** c has tobe a NEW name.

Over integer domain: Vx dy (y = x) is True but JyVx (y = x) is False

BAD “PROOF”
1. Vxdy(y=x) Given
2. Let a be an arbitrary integer
3. 3dy(y=a) Elim V: 1
4. b=>a Elim 3: b special depends on a
5. Vx(b=x) Intro V: 2,4
ﬁ 6. dyVx(y=x) Introd: 5

Can’t get rid of a since another name in the same line, b, depends on it!



Why did we need to say that b depends on a?

There are extra conditions on using these rules:

oy LLet a be arbitrary*”...P(a)  [Elim3 dx P(x)
. P(c) for some special** c

*in the domain of P. No other ** cisa NEW name.
name in P depends on a List all dependencies for c.

Over integer domain: Vx dy (y = x) is True but JyVx (y = x) is False

BAD “PROOF”

1. Vxdy(y=x) Given

2. Let a be an arbitrary integer

3. 3dy(y=a) Elim V: 1

4. b=>a Elim 3: b special depends on a

B VXWW
K’ 6. dyVx(y=x) Introd: 5

Can’t get rid of a since another name in the same line, b, depends on it!



Inference Rules for Quantifiers: Full version

P(c) for some ¢ . Vx P(x)
Intro 3 Elim V
Ix P(x) ~. P(a) for any a
—— Let a be arbitrary*”..P(a) [Eim3 3x P(x)
Vx P(x) = P(c) for some special** c
*in the domain of P. No other ** cis a NEW name.

name in P depends on a List all dependencies for c.




English Proofs

* We often write proofs in English rather than
as fully formal proofs

— They are more natural to read

* English proofs follow the structure of the
corresponding formal proofs

— Formal proof methods help to understand how
proofs really work in English...

... and give clues for how to produce them.



