CSE 311: Foundations of Computing

Lecture 9: Inference proofs predicate logic and

English proofs
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Last class: Inference Rules for Quantifiers

P(c) for some c . Vx P(x)
Intro 3 ElimV
Ix P(x) - P(a) forany a
~——_'Leta be arbitrary*”...P(a) [Eim3 Ix P(x)
Vx P(x) = P(c) for some special** c
*in the domain of P. No other ** ~is 3 NEW name.

name in P dependson a List all dependencies for c.
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Last class: Inference Rules for Quantifiers

P(c) for some c . Vx P(x)
Intro 3 Elim V
Ix P(x) - P(a) forany a
~——_'Leta be arbitrary*”...P(a) [Eim3 Ix P(x)
Vx P(x) = P(c) for some special** c
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1.2.
1.3.
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1. Vx P(x)—> 3Jx P(x) DirectProof Rule



Last class: Inference Rules for Quantifiers

P(c) for some c . Vx P(x)
Intro 3 Elim V
Ix P(x) - P(a) forany a
~——_'Leta be arbitrary*”...P(a) [Eim3 Ix P(x)
Vx P(x) = P(c) for some special** c
*in the domain of P. No other ** ~is 3 NEW name.
name in P dependson a List all dependencies for c.

Example: Prove Vx P(x) — 3x P(x)

1.1. VxP(x) Assumption
1.2. Let a be an object.

1.3. P(a) Elim V: 1.1

1.4. HdxP(x) Intro 3: 1.3

1. Vx P(x)—> 3Jx P(x) DirectProof Rule



A Prime Example

Domain of Discourse| [Predicate Definitions
Integers

Even(x) =3y (x = 2-y)

Odd(x)=3dy(x=2-y + 1)

Prime(x) = “x > 1 and x#a-b for

\_ all integers a, b with 1<a<x”

Prove “There is an even prime number”



A Prime Example

Domain of Discourse| [Predicate Definitions
Integers

Even(x) =3y (x = 2-y)
Odd(x)=3dy(x=2-y+1)

Prime(x) = “x > 1 and x#a-b for

\_ all integers a, b with 1<a<x”

Prove “There is an even prime number”
Formally: prove dx(Even(x) A Prime(x))

1. 2=2-1 Arithmetic
2. Prime(2)* Property of integers

* Later we will further break down “Prime” using quantifiers to prove statements like this



A Prime Example

Domain of Discourse| [Predicate Definitions
Integers

Even(x) =3y (x = 2-y)

Odd(x)=3dy(x=2-y + 1)

Prime(x) = “x > 1 and x#a-b for

\_ all integers a, b with 1<a<x” /

Prove “There is an even prime number”
Formally: prove dx(Even(x) A Prime(x))

1. 2=2-1 Arithmetic

2. Prime(2)* Property of integers
3. dy (2 =2-y) Intro 4: 1

4. Even(2) Defn of Even: 3

5. Even(2) A Prime(2) Intro A 2, 4

6. dx (Even(x) A Prime(x)) Intro d:5

* Later we will further break down “Prime” using quantifiers to prove statements like this



Even(x) =3y (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
—— | Let a be arbitrary*”...P(a) | [Elim 3 Ix P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

3. Vx (Even(x)—>Even(x?)) @



Even(x) =3y (x=2y)
Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Intro V .“ Let a be arbitrary*”---P(a) Elim 4 3x P(X)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2. Even(a)—>Even(a?) @
3. Vx (Even(x)—>Even(x?)) Intro V: 1,2



Even(x) =3y (x=2y)
Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

2.1 (a)  Assumption
Elim 3 3x P(x)
3 men SRy | Birectproorrue = P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer
2.1 Even(a) Assumption

2.6 Even(a?) @

2. Even(a)—Even(a?) Direct proof rule
3. Vx (Even(x)—>Even(x?)) Intro V: 1,2



Even(x) =3y (x=2y)
Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Intro V .“ Let a be arbitrary*”---P(a) Elim 4 3x P(X)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption

2.2 dy(a=2y) Definition of Even

2.5 3Jy(a’=2y) @

2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—>Even(x?)) Intro V: 1,2



Even(x) =3y (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
—— | Let a be arbitrary*”...P(a) | [Elim 3 Ix P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 dy(a=2y) Definition of Even
2.5 3Ty (a%=2y) Intro 3 rule: @ :)erii::ezczc
2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—>Even(x?)) Intro V: 1,2



Even(x) =3y (x=2y)
Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Intro V .“ Let a be arbitrary*”---P(a) Elim 4 3x P(X)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 dy(a=2y) Definition of Even
2.3 a=2b Elim 3: b special depends on a
2.5 3Ty (a%=2y) Intro 3 rule: @ :)erii::ezczc
2.6 Even(a?) Definition of Even

2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—>Even(x?)) Intro V: 1,2



Even(x) =3y (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
—— | Let a be arbitrary*”...P(a) | [Elim 3 Ix P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 dy(a=2y) Definition of Even
2.3 a=2b Elim 3: b special depends on a
2.4 a’=4b’=2(2b%) Algebra
2.5 dy(a’=2y) Intro 3 rule [ Useda’= 2cforc=2b°
2.6 Even(a?) Definition of Even

2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—>Even(x?)) Intro V: 1,2



Why did we need to say that b depends on a?

There are extra conditions on using these rules:

——'Let a be arbitrary*”...P(a) [Elim3 IxPx)
Vx P(x) = P(c) for some special** c
*in the domain of P ** ¢ has to be a NEW name.

Over integer domain: Vx dy (y = x) is True but JdyVx (y = x) is False

BAD “PROOF”

1. Vxdy(y=x) Given

2. Let a be an arbitrary integer

3. dy(y=a) Elim V: 1

4. b=>a Elim 3: b special depends on a
5. Vx(b=x) Intro V: 2,4

6. dJyVx(y=x) Introd: 5



Why did we need to say that b depends on a?

There are extra conditions on using these rules:

——'Let a be arbitrary*”...P(a) [Elim3 IxPx)
Vx P(x) = P(c) for some special** c
*in the domain of P ** ¢ has to be a NEW name.

Over integer domain: Vx dy (y = x) is True but JdyVx (y = x) is False

BAD “PROOF”
1. Vxdy(y=x) Given
2. Let a be an arbitrary integer
3. dy(y=a) Elim V: 1
4. b=>a Elim 3: b special depends on a
5. Vx(b=x) Intro V: 2,4
r’ 6. dJyVx(y=x) Introd: 5

Can’t get rid of a since another name in the same line, b, depends on it!



Why did we need to say that b depends on a?

There are extra conditions on using these rules:

oy LLet a be arbitrary*”...P(a)  [Elim3 dx P(x)
= P(c) for some special** c

*in the domain of P. No other ** cisa NEW name.
name in P dependson a List all dependencies for c.

Over integer domain: Vx dy (y = x) is True but JdyVx (y = x) is False

BAD “PROOF”

1. Vxdy(y=x) Given

2. Let a be an arbitrary integer

3. dy(y=a) Elim V: 1

4. b=>a Elim 3: b special depends on a

5 vxth=xp——-=—intto v: 2.4
ﬁ 6. dJyVx(y=x) Introd: 5

Can’t get rid of a since another name in the same line, b, depends on it!



Lecture 9 Activity

You will be assigned to breakout rooms. Please:

* Introduceyourself

 Choose someone to share their screen, showingthis PDF
* Fillin the blanks in the following formal proof

1.1. Jz. A(x) A B(x) Assumption
1.2. A(r) A B(r) ( , from 1.1)
1.3. (3 introduction, from 1.2)
1.4. Jydz. A(y) N\ B(z2) ( , from 1.3)

1. (3z. A(z) A B(z)) — (Jy3z. A(y) A B(2)) ( , from

Fill out the poll everywhere for Activity Credit!
Go to and login with your UW
identity



http://pollev.com/philipmg

English Proofs

* We often write proofs in English rather than
as fully formal proofs

— They are more natural to read

* English proofs follow the structure of the
corresponding formal proofs

— Formal proof methods help to understand how
proofs really work in English...

... ahd give clues for how to produce them.



Formal Proofs

* |n principle, formal proofs are the standard for
what it means to be “proven” in mathematics
— almost all math (and theory CS) done in Predicate Logic

* But they are tedious and impractical
— e.g., applications of commutativity and associativity

— Russell & Whitehead’s formal proof that 1+1 =2 is

several hundred pages long
we allowed ourselves to cite “Arithmetic”, “Algebra”, etc.

* Similar situation exists in programming...



Programming

%a = add %i, 1

%b = mod %a, %n

%c = add %arr, %b

%d = load %c

%e = add %arr, %i

store %e, %d arr[i] = arr[(i+1) % n];

Assembly Language High-level Language



Programming vs Proofs

%a = add %i, 1
%b = mod %a, %n
%c = add %arr, %b
%d = load %c

%e = add %arr, %i
store %e, %d

Assembly Language
for Programs

Given

Given

A Elim: 1

Double Negation: 4
V Elim: 3, 5

MP: 2, 6

Assembly Language
for Proofs



Proofs

Given

Given

A Elim: 1 what is the “Java”
Double Negation: 4 for proofs?

V Elim: 3,5

MP: 2, 6

Assembly Language High-level Language
for Proofs for Proofs



Proofs

Given

Given

A Elim: 1

Double Negation: 4
V Elim: 3,5

MP: 2, 6

English

Assembly Language High-level Language
for Proofs for Proofs



Proofs

 Formal proofs follow simple well-defined rules and
should be easy for a machine to check
— as assembly language is easy for a machine to execute

* English proofs correspond to those rules but are
designed to be easier for humans to read

— also easy to check with practice
(almost all actual math and theory CS is done this way)

— English proof is correct if the reader believes they could
translate it into a formal proof
(the reader is the “compiler” for English proofs)



Last class: Even and Odd

Even(x) =3y (x=2y)
Odd(x) =3y (x=2y+1)
Domain: Integers

Prove: “The square of every even number is even.”

Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a)
2.2 3Ty (a=2y)
2.3 a=2b
2.4 a’=4b’=2(2b?)
2.5 3Jy(a’=2y)
2.6 Even(a?)
2. Even(a)—Even(a?)
3. Vx (Even(x)—>Even(x?))

Assumption

Definition of Even

Elim 3: b special depends on a
Algebra

Intro d rule

Definition of Even

Direct proof rule

Intro V: 1,2



English Proof: Even and Odd

Even(x) =3y (x=2y)
Odd(x) =3y (x=2y+1)
Domain: Integers

Prove “The square of every even integer is even.”

Let a be an arbitrary integer.

Suppose a is even.
Then, by definition, a = 2b for

some integer b (dep on a).

Squaring both sides, we get
aZ=4b?=2(2b?).

So a? is, by definition, even.

Since a was arbitrary, we have
shown that the square of every
even number is even.

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 3Ty (a=2y) Definition
2.3 a=2b b special depends on a

2.4 a%?=4b%?=2(2b?) Algebra

2.5 3Ty (a%=2y)

2.6 Even(a?) Definition

2. Even(a)—>Even(a?)
3. Vx (Even(x)—Even(x?))



English Proof: Even and Odd

Even(x) =3y (x=2y)
Odd(x) =3y (x=2y+1)
Domain: Integers

Prove “The square of every even integer is even.”

Proof: Let a be an arbitrary integer. Suppose a is even.

Then, by definition, a = 2b for some integer b
(depending on a). Squaring both sides, we get a? = 4b? =

2(2b?%). So a?is, by definition, is even.

Since a was arbitrary, we have shown that the square of

every even number is even. B




Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd Odd(x)= 3y (x = 2y + 1)

Domain of Discourse

Integers

Prove “The sum of two odd numbers is even.”

Formally, prove Vx Vy ((Odd(x) A Odd(y))—Even(x+y))




Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd Odd(x)= 3y (x = 2y + 1)

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”

Proof: Let x and y be arbitrary integers. Suppose that
both are odd.

Then, x = 2a+1 for some integer a (depending on x) and
y = 2b+1 for some integer b (depending on x). Their sum
is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is,
by definition, even.

Since x and y were arbitrary, the sum of any two odd
integers iseven. N



Even(x) =3y (x=2y)
English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove “The sum of two odd numbers is even.”

Let x and y be arbitrary integers. 1. Letxbe an arbitrary integer
2. Lety be an arbitrary integer

2.1 0dd(x) A Odd(y) Assumption

Suppose that both are odd. 2.2 0Odd(x) ElimA: 2.1

2.3 0dd(y) Elim A: 2.1
Then, x = 2a+1 for some integer 2.4 dHz(x=2z+1) Def of Odd: 2.2
a (depending on x) and 2.5 x=2a+l Elim 3: 2.4 (a dep x)
y = 2b+1 for some integer b 2.5 3z (y=2z+1) Def of Odd: 2.3
Their sum is x+y = ... = 2(a+b+1) 2.4 xty=...=2(a+b+l) Algebra

2.5 3z (x+y =2z2) Intro 3: 2.4
so x+y is, by definition, even. 2.6 0dd(b?) Def of Even

2. 0Odd(b)—>0dd(b?)

Since x and y were arbitrary, the
3. Vx(0dd(x)—0dd(x?))

sum of any odd integers is even.



Domain of Discourse

Rational Numbers " Real Numbers _

* A real number x is rational iff there exist integers p
and q with g=0 such that x=p/q.

Rational(x) =3dp3dqg ((x=p/q) A Integer(p) A Integer(q) A q=0)




Rationality

Domain of Discourse

Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

Prove: “If x and y are rational, then xy is rational.”
Formally, prove (Rational(x) A Rational(y))—Rational(x+y)




Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A(q # 0))

Prove: “If x and y are rational, then xy is rational.”

Proof: Suppose that x and y are rational. Then, x = a/b
for some integers a, b, where b0, and y = ¢/d for some
integers c,d, where d=0.

Multiplying, we get that xy = (ac)/(bd). Since b and d are
both non-zero, so is bd. Furthermore, ac and bd are
integers. By definition, then, xy is rational.



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary.

Suppose that x and y are rational. Then, x = a/b for
some integers a, b, where b0, and y = ¢/d for some
integers c,d, where d=0.

Multiplying, we get that xy = (ac)/(bd). Since b and d are
both non-zero, so is bd. Furthermore, ac and bd are
integers. By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the
product of any two rationals is rational. B



Rationality

Domain of Discourse
Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A(q # 0))

Prove: “If x and y are rational, then xy is rational.”

Suppose that x and y are rational.

Then, x = a/b for some integers
a, b, where b0 and y = c/d for
some integers c,d, where d=-0.

1.1 Rational(x) A Rational(y) Assumption

1.4 3p 3g ((x = p/q) A Integer(p) A Integer(q) A(q # 0))
Def Rational: 1.2

1.5 (x = a/b) Alnteger(a) A Integer(b) A (b # 0)
Elim3: 1.4

1.6 3p 3g ((x = p/q) A Integer(p) A Integer(q) A (g # 0))
Def Rational: 1.3

1.7 (y = c¢/d) A Integer(c) A Integer(d) A (d # 0)
Elim3: 1.4



Rationality

Domain of Discourse
Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A(q # 0))

Prove: “If x and y are rational, then xy is rational.”

Suppose that x and y are rational.

Then, x = a/b for some integers
a, b, where b0 and y = c/d for
some integers c,d, where d=-0.

1.1 Rational(x) A Rational(y) Assumption

??

1.4 3p 3g ((x = p/q) A Integer(p) A Integer(q) A(q # 0))
Def Rational: 1.2

1.5 (x = a/b) Alnteger(a) A Integer(b) A (b # 0)
Elim3: 1.4

1.6 3p 3g ((x = p/q) A Integer(p) A Integer(q) A (g # 0))
Def Rational: 1.3

1.7 (y = c¢/d) A Integer(c) A Integer(d) A (d # 0)
Elim3: 1.4



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A(q # 0))

Prove: “If x and y are rational, then xy is rational.”

Suppose that x and y are rational. 1.1 Rational(x) A Rational(y) Assumption
1.2 Rational(x) ElimA: 1.1
1.3 Rational(y) ElimA: 1.1

1.4 3p 3q ((x = p/q) A Integer(p) Alnteger(q) A(q = 0))
Then, x = a/b for some integers Def Rational: 1.2
a, b, where b=0 and y = c¢/d for 1.5 (x = a/b) Alnteger(a) A Integer(b) A (b # 0)
some integers c,d, where d=0. Elim3: 1.4
1.6 3p 3q ((x = p/q) A Integer(p) A Integer(q) A (q # 0))
Def Rational: 1.3
1.7 (y = c¢/d) A Integer(c) A Integer(d) A (d # 0)
Elim3:1.4



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A(q # 0))

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) AlInteger(a) A Integer(b) A (b # 0)

1.7 (y = ¢/d) A Integer(c) A Integer(d) A (d # 0)

Multiplying, we get xy = (ac)/(bd). 1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)
Algebra



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A(q # 0))

Prove: “If x and y are rational, then xy is rational.”
1.5 (x = a/b) AlInteger(a) A Integer(b) A (b # 0)

1.7 (y = ¢/d) A Integer(c) A Integer(d) A (d # 0)

??

Multiplying, we get xy = (ac)/(bd). 1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)
Algebra



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A(q # 0))

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) AlInteger(a) A Integer(b) A (b # 0)

1.7 (y = ¢/d) A Integer(c) A Integer(d) A (d # 0)

1.8 x =a/b ElimA: 1.5
1.9 y =c/d Elim A: 1.7
Multiplying, we get xy = (ac)/(bd). 1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)

Algebra



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) AlInteger(a) A Integer(b) A (b # 0)

1.7 (y = ¢/d) A Integer(c) A Integer(d) A (d # 0)

1.11 b+ 0 Elim A: 1.5*
1.12 ¢c# 0 ElimA: 1.7
Since b and d are non-zero, so is bd. 1.13 bc # 0 Prop of Integer Mult

* 0ops, | skipped steps here...



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

Prove: “If x and y are rational, then xy is rational.”

1 5(x = a/b) A (Integer(a) A (Integer(b) A (b # 0)))
1 7 (y = c¢/d) A (Integer(c) A (Integer(d) A (d + 0)))

1.11 Integer(a) A (Integer(b) A (b # 0)))

ElimA: 1.5
1.12 Integer(b) A (b # 0) Elim A: 1.11
1.13 b #0 ElimA: 1.12

We left out the parentheses...



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A(q # 0))

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) AlInteger(a) A Integer(b) A (b # 0)
1.7 (y = ¢/d) A Integer(c) A Integer(d) A (d # 0)
1.13 b #0 ElimA: 1.5

1.16 c# 0 Elim A: 1.7
Since b and d are non-zero, so is bd. 1.17 bd #= 0 Prop of Integer Mult



Rationality

Domain of Discourse

Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A(q # 0))

Prove: “If x and y are rational, then xy is rational.”

Furthermore, ac and bd are integers.

1.5 (x = a/b) AlInteger(a) A Integer(b) A (b # 0)

1.7 (y = ¢/d) A Integer(c) A Integer(d) A (d # 0)

1.19 Integer(a)
1.22 Integer(b)
1.24 Integer(c)

1.27 Integer(d)
1.28 Integer(ac)
1.29 Integer(bd)

Elim A: 1.5%*
Elim A: 1.5*
Elim A: 1.7%

ElimA: 1.7*
Prop of Integer Mult
Prop of Integer Mult



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A(q # 0))

Prove: “If x and y are rational, then xy is rational.”

5..10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)

1.17 bd # 0 Prop of Integer Mult
1.28 Integer(ac) Prop of Integer Mult
1.29 Integer(bd) Prop of Integer Mult

1.30 Integer(bd) A (bc # 0) Intro A: 1.29, 1.17
1.31 Integer(ac) A Integer(bd) A (bc # 0)

Intro A: 1.28, 1.30
1.32 (xy = (a/b)/(c/d)) A Integer(ac) A

Integer(bd) A (bc # 0) Intro A: 1.10, 1.31
1.33 3p 3¢ ((xy = p/q) A Integer(p) A Integer(q) A(q # 0))
By definition, then, xy is rational. Intro 3: 1.32

1.34 Rational(xy) Def of Rational: 1.32




Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A(q # 0))

Prove: “If x and y are rational, then xy is rational.”

Suppose that x and y are rational. 1.1 Rational(x) A Rational(y) Assumption

;..10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)

1.17 bd # 0 Prop of Integer Mult

_ 1.28 Integer(ac) Prop of Integer Mult

Furthermore, ac and bd are integers. 1.99 Integer(bd) Prop of Integer Mult
By definition, then, xy is rational. 1.33 Rational(xy) Def of Rational: 1.32

What's missing?



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A(q # 0))

Prove: “If x and y are rational, then xy is rational.”

Suppose that x and y are rational. 1.1 Rational(x) A Rational(y) Assumption

;..10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)

1.17 bc+ 0 Prop of Integer Mult

_ 1.28 Integer(ac) Prop of Integer Mult

Furthermore, ac and bd are integers. 1.99 Integer(bd) Prop of Integer Mult
By definition, then, xy is rational. 1.33 Rational(xy) Def of Rational: 1.32

1. Rational(x) A Rational(y) — Rational(xy)
Direct Proof



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x)=3p 3q ((x = p/q) A Integer(p) A Integer(q) A(q # 0))

Prove: “If x and y are rational, then xy is rational.”

Proof: Suppose that x and y are rational. Then, x = a/b
for some integers a, b, where b0, and y = ¢/d for some
integers c,d, where d=0.

Multiplying, we get that xy = (ac)/(bd).

Since b and d are both non-zero, so is bd. Furthermore,

ac and bd are integers. By definition, then, xy is rational.
|

vs 34 lines of formal proof



English Proofs

* High-level language let us work more quickly
— should not be necessary to spill out every detail
— reader checks that the writer is not skipping too much

— examples so far

skipping Intro A and Elim A
not stating existence claims (immediately apply Elim 3 to name the object)

not stating that the implication has been proven (“Suppose X... Thus, Y says it already)

— (list will grow over time)

* English proof is correct if the reader believes they
could translate it into a formal proof

— the reader is the “compiler” for English proofs




Proof Strategies



Proof Strategies: Counterexamples

To prove —Vx P(x), prove I—P(x) :
« Works by de Morgan’s Law: —=Vx P(x) = 3x—P(x)
* All we need to do that is find an x where P(x) is false
* This example is called a counterexample to Vx P(x).

e.g. Prove “Not every prime number is odd”

Proof: 2 is prime but not odd, a counterexample
to the claim that every prime number is odd.



Proof Strategies: Proof by Contrapositive

If we assume —q and derive —p, then we have proven
—q — —p, which is equivalent to provingp — q.

1.1.—q Assumption

1. —q—>—p Direct Proof Rule
2. p—>q Contrapositive: 1



Proof Strategies: Proof by Contrapositive

If we assume —q and derive —p, then we have proven
—q — —p, which is equivalent to provingp — q.

We will prove the contrapositive.
Suppose —q. 1.1. —q Assumption
ThUS, _Ip. 1_3_ _Ip

1. —q—>—p Direct Proof Rule
2. p—>q Contrapositive: 1



Proof by Contradiction: One way to prove —p

If we assume p and derive F (a contradiction), then
we have proven —p.

1.1. p  Assumption

1.3. F

1. p—>F Direct Proof rule
2. -pVvF Law of Implication: 1

3. —p Identity: 2



Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we
have proven —p.

We will argue by contradiction.

Suppose p. 1.1. p Assumption
This shows F, a contradiction. 13. F _
1. p—>F Direct Proof rule
2. —pvF Law of Implication: 1

Identity: 2

W
]
g~



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd Odd(x)= 3y (x = 2y + 1)

Domain of Discourse

Integers

Prove: “No integer is both even and odd.”
Formally, prove — dx (Even(x)AOdd(x))




Predicate Definitions

Domain of Discourse

Even and Odd  |Evenix) =3y (x = 2y)

Odd(x) = 3y (x = Zy + 1) Integers

Prove: “No integer is both even and odd.”
Formally, prove — dx (Even(x)AOdd(x))

Proof: We work by contradiction. Suppose that x is an
integer that is both even and odd.

Then, x=2a for some integer a and x=2b+1 for some
integer b. This means 2a=2b+1 and hence a=b+).

But two integers cannot differ by %, so this is a
contradiction. H




Strategies

* Simple proof strategies already do a lot
— counter examples
— proof by contrapositive
— proof by contradiction

* Later we will cover a specific strategy that applies
to loops and recursion (mathematical induction)



Next Time: Set Theory

Sets are collections of objects called elements.

Write 2 € B to say that a is an element of set B,
and a & B to say that it is not.

Some simple examples
A={1}

B=1{1, 3, 2}

c={, 1}

D={{17}, 17}

E={1, 2, 7, cat, dog, &, a}




