
CSE 311: Foundations of Computing

Lecture 9:  Inference proofs predicate logic and 

English proofs



Last class: Inference Rules for Quantifiers

x P(x)        
∴ P(a) for any a

P(c) for some c
∴ x P(x)

Intro  Elim

“Let a be arbitrary*”...P(a)

∴ x P(x)
Intro 

x P(x)
∴ P(c) for some special** c

Elim

* in the domain of P.  No other   
name in P depends on a 

** c is a NEW name. 
List all dependencies for c.
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Last class: Inference Rules for Quantifiers

x P(x)        
∴ P(a) for any a

P(c) for some c
∴ x P(x)

Intro  Elim

“Let a be arbitrary*”...P(a)

∴ x P(x)
Intro 

x P(x)
∴ P(c) for some special** c

Elim

1. 𝒙 𝑷 𝒙 → 𝒙 𝑷 𝒙 Direct Proof Rule

1.1. 𝒙 𝑷 𝒙 Assumption

1.2. Let 𝒂 be an object.

1.3. 𝑷(𝒂) Elim : 1.1

1.4. 𝒙 𝑷 𝒙 Intro : 1.3

Example: Prove x P(x) → x P(x)

* in the domain of P.  No other   
name in P depends on a 

** c is a NEW name. 
List all dependencies for c.



A Prime Example

Even(x)  y (x = 2⋅y)
Odd(x)  y (x = 2⋅y + 1)
Prime(x)  “x > 1 and x≠a⋅b for 

all integers a, b with 1<a<x”

Predicate Definitions
Integers

Domain of Discourse

Prove  “There is an even prime number”



A Prime Example

Even(x)  y (x = 2⋅y)
Odd(x)  y (x = 2⋅y + 1)
Prime(x)  “x > 1 and x≠a⋅b for 

all integers a, b with 1<a<x”

Predicate Definitions
Integers

Domain of Discourse

1. 2 = 2⋅1 Arithmetic

2. Prime(2) Property of integers

Prove  “There is an even prime number”

Formally: prove  x (Even(x)  Prime(x))

*

* Later we will further break down “Prime” using quantifiers to prove statements like this



A Prime Example

Even(x)  y (x = 2⋅y)
Odd(x)  y (x = 2⋅y + 1)
Prime(x)  “x > 1 and x≠a⋅b for 

all integers a, b with 1<a<x”

Predicate Definitions
Integers

Domain of Discourse

1. 2 = 2⋅1 Arithmetic

2. Prime(2) Property of integers

3. y (2 = 2⋅y) Intro : 1

4. Even(2) Defn of Even: 3

5. Even(2)  Prime(2) Intro : 2, 4

6. x (Even(x)  Prime(x)) Intro : 5

Prove  “There is an even prime number”

Formally: prove  x (Even(x)  Prime(x))

* Later we will further break down “Prime” using quantifiers to prove statements like this

*



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of:  x (Even(x) → Even(x2))

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 

3.   x (Even(x)→Even(x2))



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of:  x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.   Even(a)→Even(a2)
3.   x (Even(x)→Even(x2))         Intro : 1,2

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of:  x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.6  Even(a2)
2.   Even(a)→Even(a2) Direct proof rule
3.   x (Even(x)→Even(x2))         Intro : 1,2

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of:  x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption
2.2 ∃y (a = 2y) Definition of Even

2.5 ∃y (a2 = 2y)
2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct proof rule
3.   x (Even(x)→Even(x2))         Intro : 1,2

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of:  x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption
2.2 ∃y (a = 2y) Definition of Even

2.5 ∃y (a2 = 2y) Intro  rule: 
2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct proof rule
3.   x (Even(x)→Even(x2))         Intro : 1,2

Need a2 = 2c
for some c

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of:  x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption
2.2 ∃y (a = 2y) Definition of Even
2.3   a = 2b Elim : b special depends on a

2.5 ∃y (a2 = 2y) Intro  rule: 
2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct proof rule
3.   x (Even(x)→Even(x2))         Intro : 1,2

Need a2 = 2c
for some c

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of:  x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption
2.2 ∃y (a = 2y) Definition of Even
2.3   a = 2b Elim : b special depends on a
2.4   a2 = 4b2 = 2(2b2)     Algebra
2.5 ∃y (a2 = 2y) Intro  rule
2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct proof rule
3.   x (Even(x)→Even(x2))         Intro : 1,2

Used a2 = 2c for c=2b2

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 



Why did we need to say that b depends on a?  

There are extra conditions on using these rules:

Over integer domain: x y (y ≥ x) is True but yx (y ≥ x) is False

1. x y (y ≥ x) Given
2. Let a be an arbitrary integer

3. y (y ≥ a) Elim : 1

4. b ≥ a Elim : b special depends on a
5. x (b ≥ x)                 Intro : 2,4

6. yx (y ≥ x)             Intro  : 5

BAD “PROOF”
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Why did we need to say that b depends on a?  

There are extra conditions on using these rules:

Over integer domain: x y (y ≥ x) is True but yx (y ≥ x) is False

1. x y (y ≥ x) Given
2. Let a be an arbitrary integer

3. y (y ≥ a) Elim : 1

4. b ≥ a Elim : b special depends on a
5. x (b ≥ x)                 Intro : 2,4

6. yx (y ≥ x)             Intro  : 5

BAD “PROOF”

Can’t get rid of a since another name in the same line, b, depends on it!



Lecture 9 Activity

Fill out the poll everywhere for Activity Credit!

Go to pollev.com/philipmg and login with your UW 

identity

You will be assigned to breakout rooms. Please:

• Introduce yourself

• Choose someone to share their screen, showing this PDF

• Fill in the blanks in the following formal proof

http://pollev.com/philipmg


English Proofs

• We often write proofs in English rather than 

as fully formal proofs

– They are more natural to read

• English proofs follow the structure of the 

corresponding formal proofs

– Formal proof methods help to understand how 

proofs really work in English...

... and give clues for how to produce them.



Formal Proofs

• In principle, formal proofs are the standard for 

what it means to be “proven” in mathematics

– almost all math (and theory CS) done in Predicate Logic

• But they are tedious and impractical

– e.g., applications of commutativity and associativity

– Russell & Whitehead’s formal proof that 1+1 = 2 is 

several hundred pages long

we allowed ourselves to cite “Arithmetic”, “Algebra”, etc.

• Similar situation exists in programming...



Programming

%a = add %i, 1

%b = mod %a, %n

%c = add %arr, %b

%d = load %c

%e = add %arr, %i

store %e, %d

Assembly Language

arr[i] = arr[(i+1) % n];

High-level Language



Programming vs Proofs

%a = add %i, 1

%b = mod %a, %n

%c = add %arr, %b

%d = load %c

%e = add %arr, %i

store %e, %d

Assembly Language

for Programs

Given

Given

∧ Elim: 1

Double Negation: 4

∨ Elim: 3, 5

MP: 2, 6

Assembly Language

for Proofs



Proofs

Given

Given

∧ Elim: 1

Double Negation: 4

∨ Elim: 3, 5

MP: 2, 6

Assembly Language

for Proofs

what is the “Java”

for proofs?

High-level Language

for Proofs



Proofs

Given

Given

∧ Elim: 1

Double Negation: 4

∨ Elim: 3, 5

MP: 2, 6

Assembly Language

for Proofs

English

High-level Language

for Proofs



Proofs

• Formal proofs follow simple well-defined rules and 

should be easy for a machine to check

– as assembly language is easy for a machine to execute

• English proofs correspond to those rules but are 

designed to be easier for humans to read

– also easy to check with practice

(almost all actual math and theory CS is done this way)

– English proof is correct if the reader believes they could 

translate it into a formal proof

(the reader is the “compiler” for English proofs)



Last class: Even and Odd

Prove: “The square of every even number is even.”

Formal proof of:  x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption
2.2 ∃y (a = 2y) Definition of Even
2.3   a = 2b Elim : b special depends on a
2.4   a2 = 4b2 = 2(2b2) Algebra
2.5 ∃y (a2 = 2y) Intro  rule
2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct proof rule
3.   x (Even(x)→Even(x2))         Intro : 1,2

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 



English Proof: Even and Odd

Prove “The square of every even integer is even.”

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2   ∃y (a = 2y) Definition

2.3   a = 2b b special depends on a

2.4   a2 = 4b2 = 2(2b2) Algebra

2.5 ∃y (a2 = 2y)
2.6  Even(a2) Definition

2.   Even(a)→Even(a2)
3.   x (Even(x)→Even(x2))

Let a be an arbitrary integer. 

Suppose a is even.

Then, by definition, a = 2b for 

some integer b (dep on a).

Squaring both sides, we get 

a2 = 4b2 = 2(2b2). 

So a2 is, by definition, even.

Since a was arbitrary, we have 

shown that the square of every 

even number is even.



English Proof: Even and Odd

Prove “The square of every even integer is even.”

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 

Proof: Let a be an arbitrary integer. Suppose a is even.

Then, by definition, a = 2b for some integer b
(depending on a). Squaring both sides, we get a2 = 4b2 = 
2(2b2). So a2 is, by definition, is even.

Since a was arbitrary, we have shown that the square of 
every even number is even.



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x)  ∃𝑦 𝑥 = 2𝑦
Odd(x)  ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  x y ((Odd(x) ∧ Odd(y))→Even(x+y))



Even and Odd

Prove “The sum of two odd numbers is even.”

Proof: Let x and y be arbitrary integers. Suppose that 
both are odd.

Then, x = 2a+1 for some integer a (depending on x) and 
y = 2b+1 for some integer b (depending on x). Their sum 
is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is, 
by definition, even.

Since x and y were arbitrary, the sum of any two odd 
integers is even.

Even(x)  ∃𝑦 𝑥 = 2𝑦
Odd(x)  ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse



English Proof: Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 

1. Let x be an arbitrary integer

2. Let y be an arbitrary integer

2.1   Odd(x) ∧ Odd(y) Assumption
2.2   Odd(x)  Elim ∧: 2.1
2.3   Odd(y) Elim ∧: 2.1

2.4   ∃z (x = 2z+1) Def of Odd: 2.2
2.5   x = 2a+1 Elim ∃: 2.4 (a dep x)

2.5   ∃z (y = 2z+1) Def of Odd: 2.3
2.6   y = 2b+1 Elim ∃: 2.5 (b dep y)

2.4   x+y = ... = 2(a+b+1) Algebra

2.5 ∃z (x+y = 2z) Intro ∃: 2.4
2.6  Odd(b2) Def of Even

2.   Odd(b)→Odd(b2)
3.   x (Odd(x)→Odd(x2))

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, x = 2a+1 for some integer 
a (depending on x) and
y = 2b+1 for some integer b 
(depending on x).

Their sum is x+y = ... = 2(a+b+1)

so x+y is, by definition, even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



Rational Numbers

• A real number x is rational iff there exist integers p

and q with q0 such that x=p/q.

Rational(x)  p q  ((x=p/q)  Integer(p)  Integer(q)  q0)    

Real Numbers
Domain of Discourse



Rationality

Prove: “If x and y are rational, then xy is rational.”

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions

Real Numbers
Domain of Discourse

Formally, prove (Rational(x) ∧ Rational(y))→Rational(x+y)



Rationality

Prove: “If x and y are rational, then xy is rational.”

Proof: Suppose that x and y are rational. Then, x = a/b 
for some integers a, b, where b0, and y = c/d for some 
integers c,d, where d0. 

Multiplying, we get that xy = (ac)/(bd). Since b and d are 
both non-zero, so is bd. Furthermore, ac and bd are 
integers. By definition, then, xy is rational.

Real Numbers
Domain of Discourse

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary.

Suppose that x and y are rational. Then, x = a/b for 
some integers a, b, where b0, and y = c/d for some 
integers c,d, where d0. 

Multiplying, we get that xy = (ac)/(bd). Since b and d are 
both non-zero, so is bd. Furthermore, ac and bd are 
integers. By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions

Suppose that x and y are rational.

Then, x = a/b for some integers

a, b, where b0 and y = c/d for

some integers c,d, where d0. 

...

1.1 Rational 𝑥 ∧ Rational 𝑦 Assumption

1.4 ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )

Def Rational: 1.2

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
Elim ∃: 1.4

1.6 ∃𝑝 ∃𝑞 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0

Def Rational: 1.3

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
Elim ∃: 1.4



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions

Suppose that x and y are rational.

Then, x = a/b for some integers

a, b, where b0 and y = c/d for

some integers c,d, where d0. 

...

1.1 Rational 𝑥 ∧ Rational 𝑦 Assumption

??

1.4 ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )

Def Rational: 1.2

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
Elim ∃: 1.4

1.6 ∃𝑝 ∃𝑞 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0

Def Rational: 1.3

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
Elim ∃: 1.4



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions

Suppose that x and y are rational.

Then, x = a/b for some integers

a, b, where b0 and y = c/d for

some integers c,d, where d0. 

...

1.1 Rational 𝑥 ∧ Rational 𝑦 Assumption

1.2 Rational 𝑥 Elim ∧: 1.1

1.3 Rational 𝑦 Elim ∧: 1.1

1.4 ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )

Def Rational: 1.2

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
Elim ∃: 1.4

1.6 ∃𝑝 ∃𝑞 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0

Def Rational: 1.3

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
Elim ∃: 1.4



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions

Multiplying, we get xy = (ac)/(bd).  

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)

Algebra



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions

Multiplying, we get xy = (ac)/(bd).  

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0

??

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)

Algebra



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions

Multiplying, we get xy = (ac)/(bd).  

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0

1.8  𝑥 = 𝑎/𝑏 Elim ∧: 1.5

1.9  𝑦 = 𝑐/𝑑 Elim ∧: 1.7

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)

Algebra



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions

Since b and d are non-zero, so is bd.

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
...

1.11  𝑏 ≠ 0 Elim ∧: 1.5*

1.12  𝑐 ≠ 0 Elim ∧: 1.7

1.13  𝑏𝑐 ≠ 0 Prop of Integer Mult

* Oops, I skipped steps here...



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions

...

1.5 𝑥 = 𝑎/𝑏 ∧ (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0 )
...

1.7 𝑦 = 𝑐/𝑑 ∧ (Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0 )
...

1.11 Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0 )

Elim ∧: 1.5

1.12  Integer 𝑏 ∧ 𝑏 ≠ 0 Elim ∧: 1.11

1.13  𝑏 ≠ 0 Elim ∧: 1.12

We left out the parentheses...



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions

Since b and d are non-zero, so is bd.

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
...

1.13  𝑏 ≠ 0 Elim ∧: 1.5
...

1.16  𝑐 ≠ 0 Elim ∧: 1.7

1.17  𝑏𝑑 ≠ 0 Prop of Integer Mult



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions

Furthermore, ac and bd are integers.

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
...

1.19 Integer 𝑎 Elim ∧: 1.5*
...

1.22 Integer 𝑏 Elim ∧: 1.5*
...

1.24 Integer 𝑐 Elim ∧: 1.7*
...

1.27 Integer 𝑑 Elim ∧: 1.7*

1.28 Integer 𝑎𝑐 Prop of Integer Mult

1.29 Integer 𝑏𝑑 Prop of Integer Mult



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions

By definition, then, xy is rational.

...

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
...

1.17  𝑏𝑑 ≠ 0 Prop of Integer Mult
...

1.28 Integer 𝑎𝑐 Prop of Integer Mult

1.29 Integer 𝑏𝑑 Prop of Integer Mult

1.30 Integer 𝑏𝑑 ∧ 𝑏𝑐 ≠ 0 Intro ∧: 1.29, 1.17

1.31 Integer 𝑎𝑐 ∧ Integer 𝑏𝑑 ∧ 𝑏𝑐 ≠ 0

Intro ∧: 1.28, 1.30

1.32 𝑥𝑦 = (𝑎/𝑏)/(𝑐/𝑑) ∧ Integer 𝑎𝑐 ∧
Integer 𝑏𝑑 ∧ 𝑏𝑐 ≠ 0 Intro ∧: 1.10, 1.31

1.33 ∃𝑝 ∃𝑞 𝑥𝑦 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0

Intro ∃: 1.32

1.34 Rational 𝑥𝑦 Def of Rational: 1.32



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions

Suppose that x and y are rational.

Furthermore, ac and bd are integers.

By definition, then, xy is rational.

1.1 Rational 𝑥 ∧ Rational 𝑦 Assumption
...

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
...

1.17  𝑏𝑑 ≠ 0 Prop of Integer Mult
...

1.28 Integer 𝑎𝑐 Prop of Integer Mult

1.29 Integer 𝑏𝑑 Prop of Integer Mult
...

1.33 Rational 𝑥𝑦 Def of Rational: 1.32

What’s missing?



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions

Suppose that x and y are rational.

Furthermore, ac and bd are integers.

By definition, then, xy is rational.

1.1 Rational 𝑥 ∧ Rational 𝑦 Assumption
...

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
...

1.17  𝑏𝑐 ≠ 0 Prop of Integer Mult
...

1.28 Integer 𝑎𝑐 Prop of Integer Mult

1.29 Integer 𝑏𝑑 Prop of Integer Mult
...

1.33 Rational 𝑥𝑦 Def of Rational: 1.32

1. Rational 𝑥 ∧ Rational 𝑦 → Rational 𝑥𝑦

Direct Proof



Rationality

Prove: “If x and y are rational, then xy is rational.”

Proof: Suppose that x and y are rational. Then, x = a/b 
for some integers a, b, where b0, and y = c/d for some 
integers c,d, where d0. 

Multiplying, we get that xy = (ac)/(bd).  

Since b and d are both non-zero, so is bd. Furthermore, 
ac and bd are integers. By definition, then, xy is rational.

vs 34 lines of formal proof

Real Numbers
Domain of Discourse

Rational(x)  ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions



English Proofs

• High-level language let us work more quickly

– should not be necessary to spill out every detail

– reader checks that the writer is not skipping too much

– examples so far
skipping Intro ∧ and Elim ∧

not stating existence claims (immediately apply Elim  to name the object)

not stating that the implication has been proven (“Suppose X... Thus, Y.” says it already)

– (list will grow over time)

• English proof is correct if the reader believes they 

could translate it into a formal proof

– the reader is the “compiler” for English proofs



Proof Strategies



Proof Strategies: Counterexamples

To prove ¬x P(x), prove  ∃P(x) :

• Works by de Morgan’s Law: ¬∀𝒙 𝑷 𝒙 ≡ ∃𝒙¬𝑷(𝒙)

• All we need to do that is find an 𝒙 where 𝑷(𝒙) is false

• This example is called a counterexample to 𝒙 𝑷(𝒙).

e.g. Prove “Not every prime number is odd”

Proof: 2 is prime but not odd, a counterexample 

to the claim that every prime number is odd.



Proof Strategies: Proof by Contrapositive

If we assumeq and derive p, then we have proven  

q→p, which is equivalent to proving p → q.

1.1. 𝒒 Assumption

...

1.3. 𝒑

1. 𝒒 →𝒑 Direct Proof Rule

2. 𝒑→ 𝒒 Contrapositive: 1                       



Proof Strategies: Proof by Contrapositive

If we assume q and derive p, then we have proven  

q→p, which is equivalent to proving p → q.

1.1. 𝒒 Assumption

...

1.3. 𝒑

1. 𝒒 →𝒑 Direct Proof Rule

2. 𝒑→ 𝒒 Contrapositive: 1

We will prove the contrapositive.

Suppose 𝒒.

...

Thus, 𝒑.



Proof by Contradiction:  One way to prove p

If we assume p and derive F (a contradiction), then 

we have proven p.

1.1.  𝒑 Assumption

...

1.3.  𝗙

1.   𝒑→ 𝗙 Direct Proof rule

2.   𝒑  𝗙 Law of Implication: 1

3.   𝒑 Identity: 2



Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we 

have proven p.

1.1.  𝒑 Assumption

...

1.3.  𝗙
1.   𝒑 → 𝗙 Direct Proof rule

2.   𝒑  𝗙 Law of Implication: 1

3.   𝒑 Identity: 2

We will argue by contradiction.

Suppose 𝒑.

...

This shows 𝗙, a contradiction.



Even and Odd

Prove: “No integer is both even and odd.”

Formally, prove   x (Even(x)Odd(x)) 

Even(x)  ∃𝑦 𝑥 = 2𝑦
Odd(x)  ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse



Even and Odd

Prove: “No integer is both even and odd.”

Formally, prove   x (Even(x)Odd(x)) 

Proof: We work by contradiction. Suppose that x is an 
integer that is both even and odd.

Then, x=2a for some integer a and x=2b+1 for some 
integer b. This means 2a=2b+1 and hence a=b+½.

But two integers cannot differ by ½, so this is a 
contradiction.

Even(x)  ∃𝑦 𝑥 = 2𝑦
Odd(x)  ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse



Strategies

• Simple proof strategies already do a lot

– counter examples

– proof by contrapositive

– proof by contradiction

• Later we will cover a specific strategy that applies 

to loops and recursion (mathematical induction)



Next Time: Set Theory

Sets are collections of objects called elements. 

Write a ∈ B to say that a is an element of set B,
and a ∉ B to say that it is not.

Some simple examples
A = {1}
B = {1, 3, 2}
C = {☐, 1}
D = {{17}, 17}
E = {1, 2, 7, cat, dog, , α}


