CSE 311: Foundations of Computing

Lecture 9: Inference proofs predicate logic and English proofs

Last class: Inference Rules for Quantifiers

Intro \forall "Let a be arbitrary*"...P(a)

$$
\therefore \quad \forall \mathrm{xP}(\mathrm{x})
$$

* in the domain of P. No other name in P depends on a

$\therefore \mathrm{P}(\mathrm{a})$ for any a
$\therefore \mathrm{P}(\mathrm{c})$ for some special $* *$
** c is a NEW name.
List all dependencies for c.

Last class: Inference Rules for Quantifiers

Intro \forall "Let a be arbitrary*"...P(a)
$\therefore \quad \forall \times \mathrm{P}(\mathrm{x})$
$*$ in the domain of P. No other name in P depends on a

$$
\operatorname{Elim} \exists \quad \exists x \mathrm{P}(\mathrm{x})
$$

$\therefore \mathrm{P}(\mathrm{c})$ for some special $* *$
** c is a NEW name.
List all dependencies for c.
Example: Prove $\forall x P(x) \rightarrow \exists x P(x)$

Last class: Inference Rules for Quantifiers

$$
\frac{\mathrm{P}(\mathrm{c}) \text { for some } \mathrm{c}}{}
$$

$$
E \lim \forall \frac{\forall \mathrm{xP}(\mathrm{x})}{\therefore \mathrm{P}(\mathrm{a}) \text { for any a }}
$$

Intro \forall "Let a be arbitrary $\quad \therefore \quad \forall \times \mathrm{P}(\mathrm{x})$

* in the domain of P. No other name in P depends on a

Elimヨ $\exists \mathrm{xP}(\mathrm{x})$
$\therefore \mathrm{P}(\mathrm{c})$ for some special ** c
** c is a NEW name.
List all dependencies for c.

Example: Prove $\forall x P(x) \rightarrow \exists x P(x)$
1.1. $\quad \forall x P(x)$
1.2.
1.3.
1.4. $\exists x P(x) \quad$ Intro \exists : 1.3

1. $\forall x P(x) \rightarrow \exists x P(x) \quad$ Direct Proof Rule

Last class: Inference Rules for Quantifiers

$$
\frac{\mathrm{P}(\mathrm{c}) \text { for some } \mathrm{c}}{\therefore \quad \exists \mathrm{x} P(\mathrm{x})}
$$

$$
E \lim \forall \frac{\forall x \mathrm{P}(\mathrm{x})}{\therefore \mathrm{P}(\mathrm{a}) \text { for any a }}
$$

| |
| :--- | :--- | :--- |
| Intro \forall "Let a be arbitrary |
| $\therefore \quad \forall \times \mathrm{P}(\mathrm{x})$ |

* in the domain of P. No other name in P depends on a

Elimヨ $\exists \mathrm{xP}(\mathrm{x})$
$\therefore \mathrm{P}(\mathrm{c})$ for some special** c
** c is a NEW name.
List all dependencies for c.

Example: Prove $\forall x P(x) \rightarrow \exists x P(x)$
1.1. $\quad \forall x P(x)$
1.2. Let a be an object.
1.3. $\quad P(a)$
1.4. $\exists x P(x)$

Assumption
Elim $\forall: 1.1$
Intro \exists : 1.3

1. $\forall x P(x) \rightarrow \exists x P(x) \quad$ Direct Proof Rule

A Prime Example

Domain of Discourse
Integers

Prove "There is an even prime number"

A Prime Example

Domain of Discourse
Integers

Predicate Definitions
Even $(x) \equiv \exists y(x=2 \cdot y)$ $\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1)$ $\operatorname{Prime}(x) \equiv " x>1$ and $x \neq a \cdot b$ for all integers a, b with $1<a<x$ "

Prove "There is an even prime number"
Formally: prove $\exists x(E v e n(x) \wedge$ Prime $(x))$

1. $2=2 \cdot 1$
2. Prime(2)*

Arithmetic
Property of integers

A Prime Example

Domain of Discourse
Integers

Predicate Definitions
$\operatorname{Even}(x) \equiv \exists y(x=2 \cdot y)$ $\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1)$ $\operatorname{Prime}(x) \equiv$ all integers a, b with $1<a<x$ "

Prove "There is an even prime number"
Formally: prove $\exists x(E v e n(x) \wedge$ Prime $(x))$

1. $2=2 \cdot 1$
2. $\operatorname{Prime}(2)^{*}$
3. $\exists y(2=2 \cdot y)$
4. Even(2)
5. Even(2) \wedge Prime(2)
6. $\quad \exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$

Arithmetic
Property of integers Intro \exists : 1
Defn of Even: 3
Intro ^: 2, 4
Intro \exists : 5

| Intro \forall "Let a be arbitrary*"...P(a) | Elim \exists $\exists \mathrm{xP}(\mathrm{x})$
 $\therefore \quad \forall \mathrm{xP}(\mathrm{x})$ $\therefore \mathrm{P}(\mathrm{c})$ for some special** c |
| :---: | :---: | :---: |

Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Even and Odd

Intro \forall "Let a be arbitrary*"...P(a) Elim $\exists \quad \exists x P(x)$
$\therefore \quad \forall \mathrm{xP}(\mathrm{x}) \quad \therefore \mathrm{P}(\mathrm{c})$ for some special ${ }^{* *} \mathrm{c}$

Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2. Even $(a) \rightarrow \operatorname{Even}\left(a^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Intro $\forall: 1,2$

Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)

Assumption
2.6 Even $\left(\mathrm{a}^{2}\right)$
2. Even $(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Direct proof rule
Intro $\forall: 1,2$

Even and Odd

Intro \forall "Let a be arbitrary*"...P(a) Elim $\exists \quad \exists x P(x)$
$\therefore \quad \forall \mathrm{xP}(\mathrm{x}) \quad \therefore \mathrm{P}(\mathrm{c})$ for some special $* * \mathrm{c}$

Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(a=2 y)$
Assumption
Definition of Even
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even(\mathbf{a}^{2})
2. Even $(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathrm{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Definition of Even Direct proof rule Intro $\forall: 1,2$

Even and Odd

Intro \forall "Let a be arbitrary*"...P(a) Elim $\exists \quad \exists x P(x)$

| $\therefore \quad \forall \mathrm{xP}(\mathrm{x})$ | $\therefore \mathrm{P}(\mathrm{c})$ for some special $* * \mathrm{c}$ |
| :--- | :--- | :--- |

Prove: "The square of every even number is even."
Formal proof of: $\forall x$ (Even $\left.(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(a=2 y)$
Assumption
Definition of Even
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even(\mathbf{a}^{2})
2. Even $(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathrm{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Intro \exists rule: ©
Need $\mathrm{a}^{2}=2 \mathrm{c}$
for some c
Definition of Even
Direct proof rule
Intro $\forall: 1,2$

Even and Odd

$\operatorname{Even}(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$ Domain: Integers

Intro \forall "Let a be arbitrary*"...P(a) Elim $\exists \quad \exists x P(x)$

\therefore	$\forall \mathrm{xP}(\mathrm{x})$	$\therefore \mathrm{P}(\mathrm{c})$ for some special $* * \mathrm{c}$

Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(a=2 y)$
2.3 a = 2b
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even(\mathbf{a}^{2})
2. Even $(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathrm{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Assumption
Definition of Even
Elim \exists : b special depends on a
Intro \exists rule.? Need $a^{2}=2 c$ for some c
Definition of Even
Direct proof rule
Intro $\forall: 1,2$

Even and Odd

$\operatorname{Even}(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$ Domain: Integers

Intro \forall "Let a be arbitrary*"...P(a) Elim $\exists \quad \exists x \mathrm{P}(\mathrm{x})$
$\therefore \quad \forall \mathrm{xP}(\mathrm{x}) \quad \therefore \mathrm{P}(\overline{\mathrm{c}})$ for some special** c

Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(a=2 y)$
$2.3 \mathrm{a}=2 \mathrm{~b}$
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right)$
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even(\mathbf{a}^{2})
2. Even $(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathrm{a}^{2}\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Assumption
Definition of Even
Elim \exists : b special depends on a
Algebra
Intro \exists rule Used $\mathrm{a}^{2}=2 \mathrm{c}$ for $\mathrm{c}=2 \mathrm{~b}^{2}$
Definition of Even
Direct proof rule
Intro $\forall: 1,2$

Why did we need to say that b depends on a ?

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
BAD "PROOF"

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a}) \quad$ Elim \forall : 1
4. $b \geq a$
5. $\forall x(b \geq x) \quad$ Intro $\forall: 2,4$
6. $\exists y \forall x(y \geq x) \quad$ Intro $\exists: 5$

Why did we need to say that b depends on a ?

There are extra conditions on using these rules:

Intro \forall	"Let a be arbitrar	Elim $\exists \quad \exists \mathrm{P}(\mathrm{x})$
	$\therefore \quad \forall \mathrm{xP}(\mathrm{x})$	$\therefore \mathrm{P}(\mathrm{c})$ for some special** c
	* in the domain of P	${ }^{* *} \mathrm{c}$ has to be a NEW name.

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
BAD "PROOF"

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a}) \quad$ Elim \forall : 1
4. $\mathrm{b} \geq \mathrm{a} \quad$ Elim \exists : b special depends on a

Intro $\forall: 2,4$
6. $\exists y \forall x(y \geq x) \quad$ Intro $\exists: 5$

Can't get rid of a since another name in the same line, b, depends on it!

Why did we need to say that b depends on a ?

There are extra conditions on using these rules:

Elim $\quad \exists x P(x)$
$\therefore \mathrm{P}(\mathrm{c})$ for some special** c
**c is a NEW name.
**c is a NEW name.
List all dependencies for c.
List all dependencies for c.

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
BAD "PROOF"

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a}) \quad$ Elim \forall : 1
4. $\mathrm{b} \geq \mathrm{a} \quad$ Elim \exists : b special depends on a

Can't get rid of a since another name in the same line, b, depends on it!

Lecture 9 Activity

You will be assigned to breakout rooms. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Fill in the blanks in the following formal proof

1.1. $\exists x . A(x) \wedge B(x)$	Assumption
1.2. $A(r) \wedge B(r)$	$(\exists$ introduction, from 1.2)
1.3., from 1.1) 1.4. $\exists y \exists z . A(y) \wedge B(z)$, from 1.3)

1. $(\exists x \cdot A(x) \wedge B(x)) \rightarrow(\exists y \exists z \cdot A(y) \wedge B(z)) \quad\left(\square\right.$, from $\left.\quad \square^{\square}\right)$

Fill out the poll everywhere for Activity Credit!
Go to pollev.com/philipmg and login with your UW identity

English Proofs

- We often write proofs in English rather than as fully formal proofs
- They are more natural to read
- English proofs follow the structure of the corresponding formal proofs
- Formal proof methods help to understand how proofs really work in English...
... and give clues for how to produce them.

Formal Proofs

- In principle, formal proofs are the standard for what it means to be "proven" in mathematics
- almost all math (and theory CS) done in Predicate Logic
- But they are tedious and impractical
- e.g., applications of commutativity and associativity
- Russell \& Whitehead's formal proof that $1+1=2$ is several hundred pages long
we allowed ourselves to cite "Arithmetic", "Algebra", etc.
- Similar situation exists in programming...

Programming

$\%$ a $=$ add $\%$ i, 1
$\% b=$ mod $\%$ a, \%n
$\% c=$ add \%arr, \%b
$\% d=$ load \%c
$\% e=$ add \%arr, \%i
store \%e, \%d
$\operatorname{arr}[\mathrm{i}]=\operatorname{arr}[(\mathrm{i}+1) \% \mathrm{n}] ;$

Assembly Language
High-level Language

Programming vs Proofs

$$
\begin{aligned}
& \% \text { a add \%i, } 1 \\
& \% b=\text { mod \%a, \%n } \\
& \% c=\text { add \%arr, \%b } \\
& \% d=\text { load \%c } \\
& \% e=\text { add \%arr, \%i } \\
& \text { store \%e, \%d }
\end{aligned}
$$

Assembly Language for Programs

Given
Given
\wedge Elim: 1
Double Negation: 4
V Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs

Proofs

Given
Given
\wedge Elim: 1
Double Negation: 4
V Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs
what is the "Java" for proofs?

High-level Language
for Proofs

Proofs

Given
Given
\wedge Elim: 1
Double Negation: 4
English
V Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs

High-level Language
for Proofs

Proofs

- Formal proofs follow simple well-defined rules and should be easy for a machine to check
- as assembly language is easy for a machine to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
- also easy to check with practice
(almost all actual math and theory CS is done this way)
- English proof is correct if the reader believes they could translate it into a formal proof
(the reader is the "compiler" for English proofs)

Last class: Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove: "The square of every even number is even."

Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(a=2 y)$
$2.3 \mathrm{a}=2 \mathrm{~b}$
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right)$
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even(a^{2})
2. Even $(\mathbf{a}) \rightarrow$ Even $\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right.$

Assumption
Definition of Even
Elim \exists : b special depends on a
Algebra
Intro \exists rule
Definition of Even
Direct proof rule
Intro $\forall: 1,2$

English Proof: Even and Odd

Prove "The square of every even integer is even."

Let a be an arbitrary integer.
Suppose a is even.
Then, $b y$ definition, $a=2 b$ for some integer b (dep on a).

Squaring both sides, we get $a^{2}=4 b^{2}=2\left(2 b^{2}\right)$.

So a^{2} is, by definition, even.
Since a was arbitrary, we have shown that the square of every even number is even.

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
$2.2 \exists y(a=2 y) \quad$ Definition
$2.3 \mathrm{a}=2 \mathrm{~b} \quad \mathrm{~b}$ special depends on a
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right)$ Algebra
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even $\left(a^{2}\right) \quad$ Definition
2. $\operatorname{Even}(\mathrm{a}) \rightarrow \operatorname{Even}\left(\mathrm{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

English Proof: Even and Odd

$\operatorname{Even}(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1)$ Domain: Integers

Prove "The square of every even integer is even."

Proof: Let a be an arbitrary integer. Suppose a is even.
Then, by definition, $a=2 b$ for some integer b (depending on a). Squaring both sides, we get $a^{2}=4 b^{2}=$ $2\left(2 b^{2}\right)$. So a^{2} is, by definition, is even.

Since a was arbitrary, we have shown that the square of every even number is even.

Predicate Definitions $\operatorname{Even}(x) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."
Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Even and Odd

Predicate Definitions
Even $(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary integers. Suppose that both are odd.

Then, $x=2 a+1$ for some integer a (depending on x) and $y=2 b+1$ for some integer b (depending on x). Their sum is $x+y=(2 a+1)+(2 b+1)=2 a+2 b+2=2(a+b+1)$, so $x+y$ is, by definition, even.
Since x and y were arbitrary, the sum of any two odd integers is even.

English Proof: Even and Odd

$$
\begin{aligned}
& \text { Even }(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, $x=2 a+1$ for some integer a (depending on x) and $y=2 b+1$ for some integer b (depending on x).

Their sum is $x+y=\ldots=2(a+b+1)$
so $x+y$ is, by definition, even.

Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

2.1	$\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})$	Assumption
2.2	Odd(x)	Elim \wedge : 2.1
2.3	Odd(y)	Elim ^: 2.1
2.4	$\exists \mathrm{z}(\mathrm{x}=2 \mathrm{z}+1)$	Def of Odd: 2.2
2.5	$x=2 a+1$	Elim \exists : 2.4 (dep d)
2.5	$\exists \mathrm{z}(\mathrm{y}=2 \mathrm{z}+1)$	Def of Odd: 2.3
2.6	$y=2 b+1$	Elim \exists : 2.5 (b dep y)
2.4	$x+y=\ldots=2(a+b+1)$	Algebra
2.5	$\exists z(x+y=2 z)$	Intro \exists : 2.4
2.6	$\operatorname{Odd}\left(\mathbf{b}^{\mathbf{2}}\right)$	Def of Even

2. $\operatorname{Odd}(\mathbf{b}) \rightarrow \operatorname{Odd}\left(\mathbf{b}^{2}\right)$
3. $\forall x\left(\operatorname{Odd}(x) \rightarrow \operatorname{Odd}\left(x^{2}\right)\right)$

Rational Numbers

- A real number x is rational iff there exist integers p and q with $q \neq 0$ such that $x=p / q$.

Rational $(x) \equiv \exists \mathrm{p} \exists \mathrm{q}((\mathrm{x}=\mathrm{p} / \mathrm{q}) \wedge \operatorname{Integer}(\mathrm{p}) \wedge \operatorname{Integer}(\mathrm{q}) \wedge \mathrm{q} \neq 0)$

Rationality

Predicate Definitions
Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Prove: "If x and y are rational, then $x y$ is rational."
Formally, prove (Rational(x) ^Rational(y)) \rightarrow Rational($x+y$)

Rationality

Predicate Definitions
Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Prove: "If x and y are rational, then $x y$ is rational."

Proof: Suppose that x and y are rational. Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=c / d$ for some integers c, d, where $\mathrm{d} \neq 0$.
Multiplying, we get that $x y=(a c) /(b d)$. Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, $x y$ is rational.

Rationality

Prove: "The product of two rationals is rational."
Proof: Let x and y be arbitrary.
Suppose that x and y are rational. Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=c / d$ for some integers c, d, where $d \neq 0$.
Multiplying, we get that $x y=(a c) /(b d)$. Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, $x y$ is rational.
Since x and y were arbitrary, we have shown that the product of any two rationals is rational. ■

Rationality

Predicate Definitions
 Rational $(x) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

Suppose that x and y are rational.

Then, $x=a / b$ for some integers a, b, where $b \neq 0$ and $y=c / d$ for some integers c, d, where $\mathrm{d} \neq 0$.
1.1 Rational $(x) \wedge \operatorname{Rational}(y)$ Assumption
1.4 $\exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$

Def Rational: 1.2
$1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0)$
Elim \exists : 1.4
$1.6 \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Def Rational: 1.3
1.7 $(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)$

Elim \exists : 1.4

Rationality

Predicate Definitions
 Rational $(x) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

Suppose that x and y are rational.
1.1 Rational $(x) \wedge \operatorname{Rational}(y)$ Assumption
??

Then, $x=a / b$ for some integers a, b, where $b \neq 0$ and $y=c / d$ for some integers c, d, where $d \neq 0$.
$1.4 \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Def Rational: 1.2
$1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0)$ Elim \exists : 1.4
$1.6 \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Def Rational: 1.3
$1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)$
Elim \exists : 1.4

Rationality

Predicate Definitions
Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$

Prove: "If x and y are rational, then $x y$ is rational."

Suppose that x and y are rational.

Then, $x=a / b$ for some integers a, b, where $b \neq 0$ and $y=c / d$ for some integers c, d, where $\mathrm{d} \neq 0$.

```
1.1 Rational \((x) \wedge \operatorname{Rational}(y)\) Assumption
1.2 Rational \((x)\)
1.3 Rational \((y)\)
Elim \(\wedge\) : 1.1
( 1.1
\(1.4 \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))\)
                                    Def Rational: 1.2
\(1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0)\)
    Elim \(\exists\) : 1.4
\(1.6 \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))\)
                                    Def Rational: 1.3
\(1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)\)
    Elim ヨ: 1.4
```


Rationality

Predicate Definitions
 Rational $(x) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

$$
\begin{aligned}
& 1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0) \\
& 1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)
\end{aligned}
$$

Multiplying, we get $\mathrm{xy}=(\mathrm{ac}) /(\mathrm{bd})$.

$$
1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d)
$$

Algebra

Rationality

Predicate Definitions
 Rational $(x) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

$$
\begin{aligned}
& 1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0) \\
& 1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)
\end{aligned}
$$

Multiplying, we get $x y=(a c) /(b d)$.

$$
1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d)
$$

Rationality

Predicate Definitions
 Rational $(x) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

Multiplying, we get $x y=(a c) /(b d)$.

$$
\begin{aligned}
& 1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0) \\
& \cdots \\
& 1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0) \\
& 1.8 x=a / b \\
& \begin{array}{lc}
1.9 y=c / d & \text { Elim } \wedge: 1.5 \\
1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d) \\
\text { Algebra }
\end{array}
\end{aligned}
$$

Rationality

Predicate Definitions
 Rational $(x) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

	$1.5(x=a / b)$	$\wedge \operatorname{Integer}(b) \wedge(b \neq 0)$
	$1.7(y=c / d)$	$\wedge \operatorname{Integer}(d) \wedge(d \neq 0)$
	$1.11 b \neq 0$	Elim \wedge : 1.5*
	$1.12 c \neq 0$	Elim \wedge : 1.7
Since b and d are non-zero, so is bd.	$1.13 b c \neq 0$	Prop of Integer Mult

Rationality

```
Predicate Definitions
Rational(x) \equiv\existsp\existsq(( x = p/q)^ Integer (p)^ Integer }(q)\wedge(q\not=0)
Prove: "If x and y are rational, then xy is rational."
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(1.5(x=a / b) \wedge(\operatorname{Integer}(a) \wedge(\operatorname{Integer}(b) \wedge(b \neq 0)))\)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(1.7(y=c / d) \wedge(\operatorname{Integer}(c) \wedge(\operatorname{Integer}(d) \wedge(d \neq 0)))\)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{1.11 Integer \((a) \wedge(\operatorname{Integer}(b) \wedge(b \neq 0))\) )} \\
\hline & Elim \(\wedge\) : 1.5 \\
\hline 1.12 Integer \((b) \wedge(b \neq 0)\) & Elim \(\wedge\) : 1.11 \\
\hline \(1.13 b \neq 0\) & Elim \(\wedge\) : 1.12 \\
\hline
\end{tabular}
```


Rationality

Predicate Definitions
 Rational $(x) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

Rationality

Predicate Definitions
 Rational $(x) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

Rationality

Predicate Definitions
 Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

$$
\begin{aligned}
& 1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d) \\
& 1.17 b d \neq 0 \\
& \text { Prop of Integer Mult } \\
& \text { 1.28 Integer }(a c) \\
& \text { 1.29 Integer (} b d \text {) } \\
& \text { 1.30 Integer }(b d) \wedge(b c \neq 0) \quad \text { Intro } \wedge: 1.29,1.17 \\
& \text { 1.31 Integer }(a c) \wedge \operatorname{Integer}(b d) \wedge(b c \neq 0) \\
& \text { Intro ^: 1.28, } 1.30 \\
& 1.32(x y=(a / b) /(c / d)) \wedge \operatorname{Integer}(a c) \wedge \\
& \text { Integer }(b d) \wedge(b c \neq 0) \quad \text { Intro } \wedge \text { : 1.10, 1.31 } \\
& 1.33 \exists p \exists q((x y=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0)) \\
& \text { Intro ヨ: } 1.32 \\
& \text { 1.34 Rational }(x y)
\end{aligned}
$$

Rationality

Predicate Definitions
 Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

Suppose that x and y are rational.

Furthermore, ac and bd are integers.

By definition, then, $x y$ is rational.
1.1 Rational $(x) \wedge \operatorname{Rational}(y)$ Assumption
$1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d)$
$1.17 b d \neq 0$
1.28 Integer $(a c)$
1.29 Integer ($b d$)
1.33 Rational $(x y)$

Prop of Integer Mult
Prop of Integer Mult
Prop of Integer Mult
Def of Rational: 1.32

What's missing?

Rationality

Predicate Definitions
 Rational $(x) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

Suppose that x and y are rational.

Furthermore, ac and bd are integers.

By definition, then, xy is rational.
1.1 Rational $(x) \wedge \operatorname{Rational}(y)$ Assumption

$$
1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d)
$$

$$
1.17 b c \neq 0
$$

Prop of Integer Mult
1.28 Integer $(a c) \quad$ Prop of Integer Mult
1.29 Integer ($b d$) Prop of Integer Mult
1.33 Rational $(x y) \quad$ Def of Rational: 1.32

1. Rational $(x) \wedge \operatorname{Rational}(y) \rightarrow \operatorname{Rational}(x y)$

Direct Proof

Rationality

```
Predicate Definitions
Rational(x) \equiv\existsp\existsq(( x = p/q)^ Integer (p)^ Integer (q)^(q\not=0))
```

Prove: "If x and y are rational, then $x y$ is rational."

Proof: Suppose that x and y are rational. Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=c / d$ for some integers c, d, where $\mathrm{d} \neq 0$.
Multiplying, we get that $x y=(a c) /(b d)$.
Since b and d are both non-zero, so is bd. Furthermore, $a c$ and $b d$ are integers. By definition, then, $x y$ is rational.

vs 34 lines of formal proof

English Proofs

- High-level language let us work more quickly
- should not be necessary to spill out every detail
- reader checks that the writer is not skipping too much
- examples so far
skipping Intro \wedge and Elim \wedge
not stating existence claims (immediately apply Elim \exists to name the object)
not stating that the implication has been proven ("Suppose X... Thus, Y." says it already)
- (list will grow over time)
- English proof is correct if the reader believes they could translate it into a formal proof
- the reader is the "compiler" for English proofs

Proof Strategies

Proof Strategies: Counterexamples

To prove $\neg \forall x \mathrm{P}(\mathrm{x})$, prove $\exists \neg \mathrm{P}(\mathrm{x})$:

- Works by de Morgan's Law: $\neg \forall x P(x) \equiv \exists x \neg P(x)$
- All we need to do that is find an x where $P(x)$ is false
- This example is called a counterexample to $\forall \boldsymbol{x} P(x)$.

e.g. Prove "Not every prime number is odd"

Proof: 2 is prime but not odd, a counterexample to the claim that every prime number is odd.

Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

$$
\begin{array}{rll}
& \text { 1.1. } \neg q & \text { Assumption } \\
& \ldots & \\
& \text { 1.3. } \neg p & \\
\text { 1. } \neg q \rightarrow \neg p & \text { Direct Proof Rule } \\
\text { 2. } p \rightarrow q & \text { Contrapositive: } 1
\end{array}
$$

Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

We will prove the contrapositive.
Suppose $\neg q$.

Thus, $\neg p$.
1.1. $\neg q$
‥
1.3. $\neg p$

1. $\neg q \rightarrow \neg p$
2. $p \rightarrow q$

Assumption

Direct Proof Rule
Contrapositive: 1

Proof by Contradiction: One way to prove $\neg \mathrm{p}$

If we assume p and derive F (a contradiction), then we have proven \neg p.
1.1. p Assumption
1.3. F

1. $p \rightarrow F \quad$ Direct Proof rule
2. $\neg \boldsymbol{p} \vee \mathrm{F}$
3. $\neg p$

Law of Implication: 1
Identity: 2

Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we have proven \neg p.

We will argue by contradiction.
Suppose p.

This shows F , a contradiction.

	1.1. p	Assumption
\ldots		
1.3. F		
1. $p \rightarrow \mathrm{~F}$	Direct Proof rule	
2. $\underset{\sim p \vee \mathrm{~F}}{ }$	Law of Implication: 1	
3. $\neg p$	Identity: 2	

Predicate Definitions $\operatorname{Even}(x) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove: "No integer is both even and odd."
Formally, prove $\neg \exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$

Predicate Definitions $\operatorname{Even}(\mathrm{x}) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove: "No integer is both even and odd."
Formally, prove $\neg \exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$
Proof: We work by contradiction. Suppose that x is an integer that is both even and odd.
Then, $x=2 a$ for some integer a and $x=2 b+1$ for some integer b. This means $2 a=2 b+1$ and hence $a=b+1 / 2$.

But two integers cannot differ by $1 / 2$, so this is a contradiction. ■

Strategies

- Simple proof strategies already do a lot
- counter examples
- proof by contrapositive
- proof by contradiction
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Next Time: Set Theory

Sets are collections of objects called elements.
Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

$$
\begin{aligned}
& \text { Some simple examples } \\
& A=\{1\} \\
& B=\{1,3,2\} \\
& C=\{\square, 1\} \\
& D=\{\{17\}, 17\} \\
& E=\{1,2,7, \text { cat }, \text { dog, } \varnothing, \alpha\}
\end{aligned}
$$

