CSE 311: Foundations of Computing

Lecture 9: Inference proofs predicate logic and English proofs

Example: Prove $\forall x P(x) \rightarrow \exists x P(x)$

Example: Prove $\forall x P(x) \rightarrow \exists x P(x)$

- **1.1.** $\forall x P(x)$ Assumption
- **1.2.** Let *a* be an object.
- 1.3.
 P(a) Elim $\forall: 1.1$

 1.4.
 $\exists x P(x)$ Intro $\exists: 1.3$

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof Rule

A Prime Example

Prove "There is an even prime number"

A Prime Example

Predicate Definitions

Even(x) $\equiv \exists y (x = 2 \cdot y)$ Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$ Prime(x) $\equiv "x > 1$ and $x \neq a \cdot b$ for all integers a, b with 1<a<x"

Prove "There is an even prime number" Formally: prove $\exists x (Even(x) \land Prime(x))$

1.	2 = 2·1	Arithmetic
2.	Prime(2)*	Property of integers

* Later we will further break down "Prime" using quantifiers to prove statements like this

A Prime Example

Domain of Discourse

Integers

Predicate Definitions

Even(x) $\equiv \exists y (x = 2 \cdot y)$ $Odd(x) \equiv \exists y (x = 2 \cdot y + 1)$ Prime(x) \equiv "x > 1 and x \neq a \cdot b for all integers a, b with 1<a<x"

Prove "There is an even prime number" Formally: prove $\exists x (Even(x) \land Prime(x))$

- 2. Prime(2)*
- 3. $\exists y (2 = 2 \cdot y)$
- 4. Even(2)
- 5. Even(2) \land Prime(2) Intro \land : 2, 4
- **Property of integers** Intro ∃: 1 Defn of Even: 3

Arithmetic

6. $\exists x (Even(x) \land Prime(x))$ Intro $\exists : 5$

* Later we will further break down "Prime" using quantifiers to prove statements like this

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let **a** be an arbitrary integer

- **2.** Even(a) \rightarrow Even(a²)
- **3.** $\forall x (Even(x) \rightarrow Even(x^2))$

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even.' Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer2.1 Even(a)Assumption

- **2.** Even(a) \rightarrow Even(a²)
- **3.** $\forall x (Even(x) \rightarrow Even(x^2))$

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

- **1.** Let a be an arbitrary integer2.1 Even(a)Assumption2.2 $\exists y (a = 2y)$ Definition of Even
- 2.5 ∃y (a² = 2y)
 2.6 Even(a²)
 2. Even(a)→Even(a²)
 3. ∀x (Even(x)→Even(x²))
- Period Provide the second state of the sec

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

Let a be an arbitrary integer
 2.1 Even(a) Assumption
 2.2 ∃y (a = 2y) Definition of Even

- **2.5** $\exists y (a^2 = 2y)$
- **2.6** Even(a²)
- **2.** Even(a) \rightarrow Even(a²)
- **3.** $\forall x (Even(x) \rightarrow Even(x^2))$

Intro \exists rule: ? Definition of Even Direct proof rule Intro \forall : 1,2 Need a² = 2c for some c

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let **a** be an arbitrary integer

- 2.1 Even(a)
 - **2.2** ∃y (**a** = 2y)
- **2.3** a = 2b

- Assumption
- Definition of Even
- Elim **∃**: **b** special depends on **a**

- **2.5** $\exists y (a^2 = 2y)$
- **2.6** Even(a²)
- **2.** Even(a) \rightarrow Even(a²)
- **3.** $\forall x (Even(x) \rightarrow Even(x^2))$

Intro \exists rule: Definition of Even Direct proof rule Intro \forall : 1,2 Need a² = 2c for some c

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let **a** be an arbitrary integer

2.1 Even(a)

- **2.4** $a^2 = 4b^2 = 2(2b^2)$
- **2.5** $\exists y (a^2 = 2y)$

2.6 Even(a²)

2. Even(a) \rightarrow Even(a²)

3. $\forall x (Even(x) \rightarrow Even(x^2))$

Elim \exists : **b** special depends on **a** Algebra Intro \exists rule Used $a^2 = 2c$ for $c=2b^2$ Definition of Even Direct proof rule

Assumption

Definition of Even

Why did we need to say that **b** depends on **a**?

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- **3.** $\exists y (y \ge a)$ Elim $\forall : 1$
- **4.** $\mathbf{b} \ge \mathbf{a}$ Elim $\exists : \mathbf{b} | \mathbf{s}|$
- 5. $\forall x (b \ge x)$
- 6. $\exists y \forall x (y \ge x)$

Elim ∃: **b** special depends on **a**

- Intro ∀: **2,4**
- Intro∃:**5**

Why did we need to say that **b** depends on **a**?

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

Can't get rid of a since another name in the same line, b, depends on it!

Why did we need to say that **b** depends on **a**?

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

Can't get rid of a since another name in the same line, b, depends on it!

You will be assigned to **breakout rooms**. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Fill in the blanks in the following formal proof

1. $(\exists x. A(x) \land B(x)) \rightarrow (\exists y \exists z. A(y) \land B(z))$ (_______, from ______,

Fill out the poll everywhere for Activity Credit! Go to pollev.com/philipmg and login with your UW identity

- We often write proofs in English rather than as fully formal proofs
 - They are more natural to read

- English proofs follow the structure of the corresponding formal proofs
 - Formal proof methods help to understand how proofs really work in English...
 - ... and give clues for how to produce them.

- In principle, formal proofs are the standard for what it means to be "proven" in mathematics
 - almost all math (and theory CS) done in Predicate Logic
- But they are **tedious** and impractical
 - e.g., applications of commutativity and associativity
 - Russell & Whitehead's formal proof that 1+1 = 2 is several hundred pages long

we allowed ourselves to cite "Arithmetic", "Algebra", etc.

• Similar situation exists in programming...

Assembly Language

High-level Language

%a = add %i, 1	Given
%b = mod %a, %n	Given
%c = add %arr, %b	∧ Elim: 1
%d = load %c	Double Negation: 4
%e = add %arr, %i	∨ Elim: 3, 5
store %e, %d	MP: 2, 6

Assembly Language for Programs

Assembly Language for Proofs

Given Given ∧ Elim: 1 Double Negation: 4 ∨ Elim: 3, 5 MP: 2, 6

what is the "Java" for proofs?

Assembly Language for Proofs

High-level Language for Proofs

Given Given ∧ Elim: 1 Double Negation: 4 ∨ Elim: 3, 5 MP: 2, 6

Assembly Language for Proofs

High-level Language for Proofs

- Formal proofs follow simple well-defined rules and should be easy for a machine to check
 - as assembly language is easy for a machine to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
 - also easy to check with practice

(almost all actual math and theory CS is done this way)

 English proof is correct if the <u>reader</u> believes they could translate it into a formal proof

(the reader is the "compiler" for English proofs)

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

- **2.1** Even(a)
- **2.2** $\exists y (a = 2y)$
- **2.3 a** = 2**b**
- **2.4** $a^2 = 4b^2 = 2(2b^2)$ Algebra
- **2.5** $\exists y (a^2 = 2y)$

2.6 Even(**a**²)

- **2.** Even(**a**) \rightarrow Even(**a**²)
- **3.** $\forall x (Even(x) \rightarrow Even(x^2))$

Definition of Even

- Elim **∃**: **b** special depends on **a**
- Intro 🗄 rule

Assumption

- **Definition of Even**
- Direct proof rule
- Intro \forall : 1,2

English Proof: Even and (Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers					
Prove "The square of every even integer is even."						
Let a be an arbitrary integer. 1 . Let a be an arbitrary integer						
Suppose a is even. 2.1	Even(<mark>a</mark>)	Assumption				
	∃y (a = 2y) a = 2b	Definition b special depends on a				
Squaring both sides, we get $a^2 = 4b^2 = 2(2b^2)$ Algebra $a^2 = 4b^2 = 2(2b^2)$.						
So at is, by definition, even.	∃y (a² = 2y Even(a²)) Definition				
Since a was arbitrary, we have shown that the square of every even number is even. 2. $Even(a) \rightarrow Even(a^2)$ 3. $\forall x (Even(x) \rightarrow Even(x^2))$						

Prove "The square of every even integer is even."

Proof: Let **a** be an arbitrary integer. Suppose **a** is even.

Then, by definition, $\mathbf{a} = 2\mathbf{b}$ for some integer \mathbf{b} (depending on \mathbf{a}). Squaring both sides, we get $\mathbf{a}^2 = 4\mathbf{b}^2 = 2(2\mathbf{b}^2)$. So \mathbf{a}^2 is, by definition, is even.

Since **a** was arbitrary, we have shown that the square of every even number is even. ■

Predicate Definitions

Even and Odd

Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Even(x) = $\exists y (x = 2y)$

 $Odd(x) \equiv \exists y \ (x = 2y + 1)$

Domain of Discourse Integers

Prove "The sum of two odd numbers is even."

Even and Odd

Proof: Let x and y be arbitrary integers. Suppose that both are odd.

Then, x = 2a+1 for some integer a (depending on x) and y = 2b+1 for some integer b (depending on x). Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even. ■

Def of Odd: 2.2

Def of Odd: 2.3

Elim \exists : 2.4 (a dep x)

Elim \exists : 2.5 (**b** dep **y**)

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, x = 2a+1 for some integer a (depending on x) and y = 2b+1 for some integer b (depending on x).

Their sum is $x+y = ... = 2(a+b+1)^{4}$

so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any odd integers is even.

Let x be an arbitrary integer
 Let y be an arbitrary integer

- **2.1** $Odd(\mathbf{x}) \land Odd(\mathbf{y})$ Assumption**2.2** $Odd(\mathbf{x})$ Elim \land : 2.1**2.3** $Odd(\mathbf{y})$ Elim \land : 2.1
- 2.4 ∃z (x = 2z+1)
 2.5 x = 2a+1
- 2.5 ∃z (y = 2z+1)
 2.6 y = 2b+1
- 2.4 x+y = ... = 2(a+b+1) Algebra
- **2.5** $\exists z (x+y = 2z)$ Intro $\exists : 2.4$ **2.6** $Odd(b^2)$ Def of Even
- **2.** $Odd(b) \rightarrow Odd(b^2)$ **3.** $\forall x (Odd(x) \rightarrow Odd(x^2))$

 A real number x is *rational* iff there exist integers p and q with q≠0 such that x=p/q.

Rational(x) = $\exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$

Rationality

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational." Formally, prove (Rational(x) \land Rational(y)) \rightarrow Rational(x+y)

Rationality

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Proof: Suppose that x and y are rational. Then, x = a/b for some integers a, b, where $b\neq 0$, and y = c/d for some integers c,d, where $d\neq 0$.

Multiplying, we get that xy = (ac)/(bd). Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, xy is rational.

Rationality

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "The product of two rationals is rational."

Proof: Let x and y be arbitrary.

Suppose that x and y are rational. Then, x = a/b for some integers a, b, where $b\neq 0$, and y = c/d for some integers c,d, where $d\neq 0$.

Multiplying, we get that xy = (ac)/(bd). Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Suppose that x and y are rational.

1.1 Rational(x) \land Rational(y) **Assumption**

Then, x = a/b for some integers a, b, where $b \neq 0$ and y = c/d for some integers c,d, where $d \neq 0$. **1.4** $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$ **Def Rational: 1.2 1.5** $(x = a/b) \land \operatorname{Integer}(a) \land \operatorname{Integer}(b) \land (b \neq 0)$ **Elim** \exists : **1.4 1.6** $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$ **Def Rational: 1.3 1.7** $(y = c/d) \land \operatorname{Integer}(c) \land \operatorname{Integer}(d) \land (d \neq 0)$ **Elim** \exists : **1.4**

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Suppose that x and y are rational.

1.1 Rational(x) \land Rational(y) **Assumption**

??

Then, x = a/b for some integers a, b, where $b \neq 0$ and y = c/d for some integers c,d, where $d \neq 0$. **1.4** $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$ **Def Rational: 1.2 1.5** $(x = a/b) \land \operatorname{Integer}(a) \land \operatorname{Integer}(b) \land (b \neq 0)$ **Elim** \exists : **1.4 1.6** $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$ **Def Rational: 1.3 1.7** $(y = c/d) \land \operatorname{Integer}(c) \land \operatorname{Integer}(d) \land (d \neq 0)$ **Elim** \exists : **1.4**

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Suppose that x and y are rational.

Then, x = a/b for some integers a, b, where $b \neq 0$ and y = c/d for some integers c,d, where $d \neq 0$.

1.1 Rational(x) \land Rational(y) **Assumption 1.2** Rational(x) Elim ∧: 1.1 **1.3** Rational(y) Elim ∧: 1.1 **1.4** $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$ Def Rational: 1.2 **1.5** $(x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$ Elim 7: 1.4 **1.6** $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$ Def Rational: 1.3 **1.7** $(y = c/d) \wedge \text{Integer}(c) \wedge \text{Integer}(d) \wedge (d \neq 0)$ Elim 3: 1.4

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$

1.7 $(y = c/d) \wedge \text{Integer}(c) \wedge \text{Integer}(d) \wedge (d \neq 0)$

Multiplying, we get xy = (ac)/(bd).

1.10
$$xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)$$

Algebra

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$

1.7 $(y = c/d) \wedge \text{Integer}(c) \wedge \text{Integer}(d) \wedge (d \neq 0)$

??

Multiplying, we get xy = (ac)/(bd).

1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)Algebra

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$ **1.7** $(y = c/d) \land \text{Integer}(c) \land \text{Integer}(d) \land (d \neq 0)$ **1.8** x = a/b **1.9** y = c/d **1.10** xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)Algebra

Multiplying, we get xy = (ac)/(bd).

Predicate Definitions

Since b and d are non-zero, so is bd.

 $ational(x) \equiv \exists p \exists q ((x = p/q) \land Integer(p) \land Integer(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \wedge \text{Integer}(a) \wedge \text{Integer}(b) \wedge (b \neq 0)$ 1.7 $(y = c/d) \wedge \text{Integer}(c) \wedge \text{Integer}(d) \wedge (d \neq 0)$ 1.11 $b \neq 0$ 1.12 $c \neq 0$ 1.13 $bc \neq 0$ Elim \wedge : 1.7 Prop of Integer Mult

* Oops, I skipped steps here...

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \land (\text{Integer}(a) \land (\text{Integer}(b) \land (b \neq 0)))$ **1.7** $(y = c/d) \land (\text{Integer}(c) \land (\text{Integer}(d) \land (d \neq 0)))$ **1.11** $\text{Integer}(a) \land (\text{Integer}(b) \land (b \neq 0)))$ **1.12** $\text{Integer}(b) \land (b \neq 0)$ **1.13** $b \neq 0$ **Elim** \land : **1.11 Elim** \land : **1.12**

We left out the parentheses...

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \land$ Integer $(a) \land$ Integer $(b) \land (b \neq 0)$...1.7 $(y = c/d) \land$ Integer $(c) \land$ Integer $(d) \land (d \neq 0)$...1.13 $b \neq 0$...1.16 $c \neq 0$ I.17 $bd \neq 0$ Prop of Integer Mult

Since b and d are non-zero, so is bd.

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$ **1.7** $(y = c/d) \wedge \text{Integer}(c) \wedge \text{Integer}(d) \wedge (d \neq 0)$ Elim ∧: 1.5* **1.19** Integer(*a*) **1.22** Integer(*b*) Elim ∧: 1.5* **1.24** Integer(*c*) Elim ∧: 1.7* **1.27** Integer(*d*) Elim ∧: 1.7* **1.28** Integer(*ac*) **Prop of Integer Mult 1.29** Integer(*bd*) **Prop of Integer Mult**

Furthermore, ac and bd are integers.

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)**1.17** $bd \neq 0$ **Prop of Integer Mult 1.28** Integer(*ac*) **Prop of Integer Mult 1.29** Integer(*bd*) Prop of Integer Mult **1.30** Integer(*bd*) \land (*bc* \neq 0) Intro \land : **1.29**, **1.17 1.31** Integer(*ac*) \land Integer(*bd*) \land (*bc* \neq 0) Intro ∧: 1.28, 1.30 **1.32** $(xy = (a/b)/(c/d)) \land \text{Integer}(ac) \land$ Integer(bd) \land ($bc \neq 0$) Intro \land : **1.10**, **1.31 1.33** $\exists p \exists q ((xy = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$ Intro 7: 1.32 **1.34** Rational(xy) Def of Rational: 1.32

By definition, then, xy is rational.

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Suppose that x and y are rational.

Furthermore, ac and bd are integers.

By definition, then, xy is rational.

1.1 Rational(x) \land Ration	nal(y) Assumption
1.10 $xy = (a/b)(c/d) =$	= (ac/bd) = (ac)/(bd)
1.17 $bd \neq 0$	Prop of Integer Mult
1.28 Integer(<i>ac</i>) 1.29 Integer(<i>bd</i>)	Prop of Integer Mult Prop of Integer Mult
1.33 Rational(<i>xy</i>)	Def of Rational: 1.32

What's missing?

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Suppose that x and y are rational.

Furthermore, ac and bd are integers.

By definition, then, xy is rational.

1.1 Rational(x) \land Rational	al(y) Assumption
1.10 $xy = (a/b)(c/d) =$	(ac/bd) = (ac)/(bd)
1.17 $bc \neq 0$	Prop of Integer Mult
1.28 Integer(<i>ac</i>) 1.29 Integer(<i>bd</i>)	Prop of Integer Mult Prop of Integer Mult
1.33 Rational(<i>xy</i>)	Def of Rational: 1.32

1. Rational(x) \land Rational(y) \rightarrow Rational(xy) **Direct Proof**

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Proof: Suppose that x and y are rational. Then, x = a/b for some integers a, b, where $b\neq 0$, and y = c/d for some integers c,d, where $d\neq 0$.

Multiplying, we get that xy = (ac)/(bd).

Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, xy is rational.

vs 34 lines of formal proof

- High-level language let us work more quickly
 - should not be necessary to spill out every detail
 - <u>reader</u> checks that the writer is not skipping too much

examples so far

skipping Intro \land and Elim \land not stating existence claims (immediately apply Elim \exists to name the object) not stating that the implication has been proven ("Suppose X... Thus, Y." says it already)

```
    (list will grow over time)
```

 English proof is correct if the <u>reader</u> believes they could translate it into a formal proof

– the reader is the "compiler" for English proofs

Proof Strategies

To prove $\neg \forall x P(x)$, prove $\exists \neg P(x)$:

- Works by de Morgan's Law: $\neg \forall x P(x) \equiv \exists x \neg P(x)$
- All we need to do that is find an x where P(x) is false
- This example is called a **counterexample** to $\forall x P(x)$.

e.g. Prove "Not every prime number is odd"

Proof: 2 is prime but not odd, a counterexample to the claim that every prime number is odd.

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

1.1. $\neg q$ Assumption...1.3. $\neg p$ 1. $\neg q \rightarrow \neg p$ Direct Proof Rule2. $p \rightarrow q$ Contrapositive: 1

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

We will prove the contrapositive.

Suppose $\neg q$.		1.1. ¬ <i>q</i>	Assumption
Thus, ¬ <i>p</i> .		1.3. ¬ <i>p</i>	
	1.	eg q ightarrow eg p	Direct Proof Rule
	2.	p ightarrow q	Contrapositive: 1

Proof by Contradiction: One way to prove $\neg p$

If we assume p and derive F (a contradiction), then we have proven $\neg p$.

If we assume **p** and derive **F** (a contradiction), then we have proven $\neg p$.

We will argue by contradiction.

Suppose *p*.

...

This shows **F**, a contradiction.

	1.1. <i>p</i>	Assumption
	 1.3. F	
1.	$p ightarrow { extsf{F}}$	Direct Proof rule
2.	$ eg oldsymbol{p} ee oldsymbol{F}$	Law of Implication: 1
3.	eg p	Identity: 2

Predicate Definitions

Even and Odd

Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$ Domain of Discourse Integers

Prove: "No integer is both even and odd." Formally, prove $\neg \exists x (Even(x) \land Odd(x))$

Predicate Definitions

Even and Odd

Even(x) = $\exists y (x = 2y)$ $Odd(x) \equiv \exists y \ (x = 2y + 1)$

Prove: "No integer is both even and odd." Formally, prove $\neg \exists x (Even(x) \land Odd(x))$

Proof: We work by contradiction. Suppose that x is an integer that is both even and odd.

Then, x=2a for some integer a and x=2b+1 for some integer b. This means 2a=2b+1 and hence $a=b+\frac{1}{2}$.

But two integers cannot differ by $\frac{1}{2}$, so this is a contradiction.

- Simple proof strategies already do a lot
 - counter examples
 - proof by contrapositive
 - proof by contradiction
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

```
Some simple examples

A = \{1\}

B = \{1, 3, 2\}

C = \{\Box, 1\}

D = \{\{17\}, 17\}

E = \{1, 2, 7, cat, dog, \emptyset, \alpha\}
```