CSE 311: Foundations of Computing

Lecture 10: English proofs and proof strategies

Recap from last lecture: Inference proofs

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

> Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Recap from last lecture: Inference proofs

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$ Even(x) $\equiv \exists y (x=2y)$ **1.** Let a be an arbitrary integer $Odd(x) \equiv \exists y (x=2y+1)$ **2.1** Even(a) Assumpt. **Domain: Integers 2.2** $\exists y (a = 2y)$ Def. Even 2.3 a = 2bElim \exists : **b** special depends on **a 2.4** $a^2 = 4b^2 = 2(2b^2)$ Algebra **2.5** $\exists y (a^2 = 2y)$ Intro \exists rule

- **2.6** Even(a²)
- **2.** Even(a) \rightarrow Even(a²)
- **3.** $\forall x (Even(x) \rightarrow Even(x^2))$

Definition of Even

- Direct proof rule
- Intro \forall : 1,2

Used
$$a^2 = 2c$$
 for $c=2b^2$

 We often write proofs in English rather than as fully formal proofs

- They are more natural to read

- English proofs follow the structure of the corresponding formal proofs
 - Formal proof methods help to understand how proofs really work in English...
 - ... and give clues for how to produce them.

- In principle, formal proofs are the standard for what it means to be "proven" in mathematics
 - almost all math (and theory CS) done in Predicate Logic
- But they are tedious and impractical
 - e.g., applications of commutativity and associativity
 - Russell & Whitehead's formal proof that 1+1 = 2 is several hundred pages long

we allowed ourselves to cite "Arithmetic", "Algebra", etc.

• Similar situation exists in programming...

Programming

%a = add %i , 1	
%b = mod %a, %n	
%c = add %arr, %b	
%d = load %c	
%e = add %arr, %i	
store %e, %d	arr[i] = arr[(i+1) % n];

Assembly Language

High-level Language

%a = add %i, 1	Given
%b = mod %a, %n	Given
%c = add %arr, %b	∧ Elim: 1
%d = load %c	Double Negation: 4
%e = add %arr, %i	∨ Elim: 3, 5
store %e, %d	MP: 2, 6

Assembly Language for Programs

Assembly Language for Proofs

Given Given ∧ Elim: 1 Double Negation: 4 ∨ Elim: 3, 5 MP: 2, 6

what is the "Java" for proofs?

Assembly Language for Proofs

High-level Language for Proofs

Given Given ∧ Elim: 1 Double Negation: 4 ∨ Elim: 3, 5 MP: 2, 6

Assembly Language for Proofs

High-level Language for Proofs

- Formal proofs follow simple well-defined rules and should be easy for a machine to check
 - as assembly language is easy for a machine to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
 - also easy to check with practice

(almost all actual math and theory CS is done this way)

 English proof is correct if the <u>reader</u> believes they could translate it into a formal proof

(the reader is the "compiler" for English proofs)

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

- **2.1** Even(a)
- **2.2** ∃y (a = 2y)
- **2.3** a = 2b
- **2.4** $a^2 = 4b^2 = 2(2b^2)$ Algebra
- **2.5** $\exists y (a^2 = 2y)$
- **2.6** Even(**a**²)
- **2.** Even(a) \rightarrow Even(a²)
- **3.** $\forall x (Even(x) \rightarrow Even(x^2))$

- Assumption
- **Definition of Even**
 - Elim \exists : **b** special depends on **a**

 - Intro \exists rule
 - **Definition of Even**
 - Direct proof rule
 - Intro \forall : 1,2

English Proof: Even a	Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers	
Prove "The square of every	even integer is e	even."
Let a be an arbitrary integer.	1. Let a be an a	rbitrary integer
Suppose a is even.	2.1 Even(a)	Assumption
Then, by definition, a = 2 b for some integer b (dep on a).	2.2 ∃y (a = 2y) 2.3 a = 2b	Definition b special depends on a
Squaring both sides, we get $a^2 = 4b^2 = 2(2b^2)$.	2.4 $a^2 = 4b^2 = 2$	2(2 <mark>b²)</mark> Algebra
So a ² is, by definition, even.	2.5 ∃y (a ² = 2y 2.6 Even(a ²)) Definition
Since a was arbitrary, we have shown that the square of every even number is even.	2. Even(a)→Eve 3. $\forall x$ (Even(x)→	

Prove "The square of every even integer is even."

Proof: Let **a** be an arbitrary integer. Suppose **a** is even.

Then, by definition, $\mathbf{a} = 2\mathbf{b}$ for some integer \mathbf{b} (depending on \mathbf{a}). Squaring both sides, we get $\mathbf{a}^2 = 4\mathbf{b}^2 = 2(2\mathbf{b}^2)$. So \mathbf{a}^2 is, by definition, is even.

Since **a** was arbitrary, we have shown that the square of every even number is even. ■

Predicate Definitions

Even and Odd

Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Even(x) = $\exists y (x = 2y)$

 $Odd(x) \equiv \exists y \ (x = 2y + 1)$

Domain of Discourse Integers

Prove "The sum of two odd numbers is even."

Even and Odd

Proof: Let x and y be arbitrary integers. Suppose that both are odd.

Then, x = 2a + 1 for some integer a (depending on x) and y = 2b + 1 for some integer b (depending on x). Their sum is x + y = (2a + 1) + (2b + 1) = 2a + 2b + 2 = 2(a + b + 1), so x + y is, by definition, even. Since x and y were arbitrary, the sum of any two odd integers is even.

```
Even(x) \equiv \exists y (x=2y)
Odd(x) \equiv \exists y (x=2y+1)
Domain: Integers
```

Def of Odd: 2.2

Def of Odd: 2.3

Elim \exists : 2.4 (a dep x)

Elim \exists : 2.5 (**b** dep **y**)

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, x = 2a+1 for some integer a (depending on x) and y = 2b+1 for some integer b (depending on x).

Their sum is $x+y = \dots = 2(a+b+1)^{4}$

so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any odd integers is even.

Let x be an arbitrary integer
 Let y be an arbitrary integer

2.1	$Odd(\mathbf{x}) \land Odd(\mathbf{y})$	Assumption
2.2	Odd(x)	Elim ∧: 2.1
2.3	Odd(y)	Elim ∧: 2.1

2.4 ∃z (x = 2z+1)
2.5 x = 2a+1

2.5 ∃z (y = 2z+1)
2.6 y = 2b+1

2.7 x+y = ... = 2(a+b+1) Algebra

2.8 ∃z (x+y = 2z)
 Intro ∃: 2.4

 2.9 Even(x+y)
 Def of Even

2. (Odd(x) ∧ Odd(y)) → Even(x+y) 3. $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Lecture 10 Activity

- You will be assigned to **breakout rooms**. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF
- Consider the statement:

The sum of two even numbers is even.

- Recall that an integer x is even if and only if there is an integer z with x = 2z.
- Please do the following
 - **1**. Write the statement in predicate logic
 - 2. Write an English proof

Fill out a poll everywhere for Activity Credit! Go to pollev.com/thomas311 and login with your UW identity Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary integers. Suppose that both are odd. Then, x = 2a + 1 for some integer a(depending on x) and y = 2b + 1 for some integer b (depending on x). Their sum is x + y = (2a + 1) + (2b + 1) = 2a + 2b + 2 = 2(a + b + 1), so x + y is, by definition, even. Since x and y were arbitrary, the sum of any two odd integers is even. A real number x is *rational* iff there exist integers p and q with q≠0 such that x=p/q.

Rational(x) = $\exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$

Rationality

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Formally, prove $\forall x \forall y ((Rational(x) \land Rational(y))) \rightarrow Rational(x \cdot y)$

Rationality

Predicate Definitions

 $\mathsf{Rational}(\mathsf{x}) \equiv \exists p \; \exists q \; ((x = p/q) \land \mathsf{Integer}(p) \land \mathsf{Integer}(q) \land (q \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Proof: Suppose that x and y are rational. Then, x = a/b for some integers a, b, where $b\neq 0$, and y = c/d for some integers c,d, where $d\neq 0$.

Multiplying, we get that xy = (ac)/(bd). Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, xy is rational.

Rationality

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$

Prove: "The product of two rationals is rational."

Proof: Let x and y be arbitrary.

Suppose that x and y are rational. Then, x = a/b for some integers a, b, where $b\neq 0$, and y = c/d for some integers c,d, where $d\neq 0$.

Multiplying, we get that xy = (ac)/(bd). Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

English Proofs

- High-level language let us work more quickly
 - should not be necessary to spill out every detail
 - <u>reader</u> checks that the writer is not skipping too much

examples so far

skipping Intro \land and Elim \land not stating existence claims (immediately apply Elim \exists to name the object) not stating that the implication has been proven ("Suppose X... Thus, Y." says it already)

(list will grow over time)

- English proof is correct if the <u>reader</u> believes they could translate it into a formal proof
 - the reader is the "compiler" for English proofs

Proof Strategies

To prove $\neg \forall x P(x)$, prove $\exists \neg P(x)$:

- Works by de Morgan's Law: $\neg \forall x P(x) \equiv \exists x \neg P(x)$
- All we need to do that is find an x where P(x) is false
- This example is called a *counterexample* to $\forall x P(x)$.

e.g. Prove "Not every prime number is odd"

Proof: 2 is prime but not odd, a counterexample to the claim that every prime number is odd.

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

1.1. $\neg q$ Assumption ... 1.3. $\neg p$ 1. $\neg q \rightarrow \neg p$ Direct Proof Rule 2. $p \rightarrow q$ Contrapositive: 1 If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

We will prove the contrapositive.

Suppose $\neg q$.		1.1. ¬ <i>q</i>	Assumption
•••			
Thus, ¬ <i>p</i> .		1.3. ¬ <i>p</i>	
	1.	eg q ightarrow eg p	Direct Proof Rule
	2.	$p \rightarrow q$	Contrapositive: 1

If we assume p and derive F (a contradiction), then we have proven $\neg p$.

If we assume p and derive F (a contradiction), then we have proven $\neg p$.

We will argue by contradiction.

Suppose *p*.

...

This shows **F**, a contradiction.

	1.1. <i>p</i>	Assumption
	 1.3. F	
1.	$p ightarrow { extsf{F}}$	Direct Proof rule
2.	$ eg oldsymbol{p} ee oldsymbol{F}$	Law of Implication: 1
3.	eg p	Identity: 2

Predicate Definitions

Even and Odd

Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$ Domain of Discourse Integers

Prove: "No integer is both even and odd." Formally, prove $\neg \exists x (Even(x) \land Odd(x))$

Even(x) = $\exists y (x = 2y)$

 $Odd(x) \equiv \exists y \ (x = 2y + 1)$

Domain of Discourse Integers

Prove: "No integer is both even and odd." Formally, prove $\neg \exists x (Even(x) \land Odd(x))$

Even and Odd

Proof: We work by contradiction. Suppose that x is an integer that is both even and odd.

Then, x=2a for some integer a and x=2b+1 for some integer b. This means 2a=2b+1 and hence a=b+1/2.

But two integers cannot differ by ½, so this is a contradiction. ■

<u>Definition:</u> An integer y is a strict multiple of x, if $y = a \cdot x$ for some integer a with $a \ge 2$.

Predicate Definitions

SMul (x,y) = $\exists a \ (a \ge 2 \land y = ax)$

Domain of Discourse Positive Integers

Example: SMul(7,21) = T, SMul(7,22) = F, SMul(5,5) = F

<u>Definition:</u> An integer y is a strict multiple of x, if $y = a \cdot x$ for some integer a with $a \ge 2$.

Predicate Definitions

SMul (x,y) =
$$\exists a \ (a \ge 2 \land y = ax)$$

Domain of Discourse Positive Integers

Example: SMul(7,21) = T, SMul(7,22) = F, SMul(5,5) = F

<u>Prove:</u> For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

<u>Definition:</u> An integer y is a strict multiple of x, if $y = a \cdot x$ for some integer a with $a \ge 2$.

Predicate Definitions

SMul (x,y) =
$$\exists a \ (a \ge 2 \land y = ax)$$

Domain of Discourse Positive Integers

Example: SMul(7,21) = T, SMul(7,22) = F, SMul(5,5) = F

<u>Prove</u>: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

 $\forall x \exists y (SMul(x, y) \land \forall z \neg (SMul(x, z) \land SMul(z, y)))$

A proof with multiples

$\forall x \exists y (SMul(x, y) \land \forall z \neg (SMul(x, z) \land SMul(z, y)))$

<u>Prove</u>: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

A proof with multiples

$\forall x \exists y (SMul(x, y) \land \forall z \neg (SMul(x, z) \land SMul(z, y)))$

<u>Prove</u>: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let *x* be an arbitrary positive integer.

A proof with multiples

$\forall x \exists y (SMul(x, y) \land \forall z \neg (SMul(x, z) \land SMul(z, y)))$

<u>Prove</u>: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let *x* be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.

$\forall x \exists y (SMul(x, y) \land \forall z \neg (SMul(x, z) \land SMul(z, y)))$

<u>Prove</u>: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let *x* be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.

Let z be an arbitrary positive integer.

$\forall x \exists y (SMul(x, y) \land \forall z \neg (SMul(x, z) \land SMul(z, y)))$

<u>Prove</u>: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let *x* be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.

Let z be an arbitrary positive integer.

Assume for the sake of contradiction that z is a strict multiple of x and y is a strict multiple of z.

$\forall x \exists y (SMul(x, y) \land \forall z \neg (SMul(x, z) \land SMul(z, y)))$

<u>Prove</u>: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let *x* be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.

Let z be an arbitrary positive integer.

Assume for the sake of contradiction that z is a strict multiple of x and y is a strict multiple of z.

Hence z = ax and y = bz for some integers a, b with $a \ge 2$ and $b \ge 2$.

$\forall x \exists y (SMul(x, y) \land \forall z \neg (SMul(x, z) \land SMul(z, y)))$

<u>Prove</u>: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let *x* be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.

Let z be an arbitrary positive integer.

Assume for the sake of contradiction that z is a strict multiple of x and y is a strict multiple of z.

Hence z = ax and y = bz for some integers a, b with $a \ge 2$ and $b \ge 2$.

Then
$$2x = y = bz = abx$$
.

$\forall x \exists y (SMul(x, y) \land \forall z \neg (SMul(x, z) \land SMul(z, y)))$

<u>Prove</u>: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let *x* be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.

Let z be an arbitrary positive integer.

Assume for the sake of contradiction that z is a strict multiple of x and y is a strict multiple of z.

Hence z = ax and y = bz for some integers a, b with $a \ge 2$ and $b \ge 2$.

Then 2x = y = bz = abx. Dividing by $x \neq 0$ gives $2 = ab \geq 4$. That is a contradiction.

- Simple proof strategies already do a lot
 - counter examples
 - proof by contrapositive
 - proof by contradiction
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Applications of Predicate Logic

- Remainder of the course will use predicate logic to prove <u>important</u> properties of <u>interesting</u> objects
 - start with math objects that are widely used in CS
 - eventually more CS-specific objects
- Encode domain knowledge in predicate definitions
- Then apply predicate logic to infer useful results

Domain of Discourse
Integers

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

```
Some simple examples

A = \{1\}

B = \{1, 3, 2\}

C = \{\Box, 1\}

D = \{\{17\}, 17\}

E = \{1, 2, 7, cat, dog, \emptyset, \alpha\}
```

N is the set of Natural Numbers; N = {0, 1, 2, ...} Z is the set of Integers; Z = {..., -2, -1, 0, 1, 2, ...} Q is the set of Rational Numbers; e.g. ½, -17, 32/48 R is the set of Real Numbers; e.g. 1, -17, 32/48, π , $\sqrt{2}$ [n] is the set {1, 2, ..., n} when n is a natural number {} = Ø is the empty set; the *only* set with no elements For example A = $\{\{1\},\{2\},\{1,2\},\emptyset\}$ B = $\{1,2\}$

Then $B \in A$.

• A and B are equal if they have the same elements

$$A = B \equiv \forall x (x \in A \leftrightarrow x \in B)$$

• A is a subset of B if every element of A is also in B

$$\mathsf{A} \subseteq \mathsf{B} \equiv \forall x (x \in \mathsf{A} \rightarrow x \in \mathsf{B})$$

• Note:
$$(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$$

A and B are equal if they have the same elements

$$\mathsf{A} = \mathsf{B} \equiv \forall x \ (x \in \mathsf{A} \leftrightarrow x \in \mathsf{B})$$

$$A = \{1, 2, 3\}$$

$$B = \{3, 4, 5\}$$

$$C = \{3, 4\}$$

$$D = \{4, 3, 3\}$$

$$E = \{3, 4, 3\}$$

$$F = \{4, \{3\}\}$$

Which sets are equal to each other?

A is a subset of B if every element of A is also in B

$$A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$$

S = the set of all^{*} x for which P(x) is true

 $S = \{x : P(x)\}$

S = the set of all x in A for which P(x) is true

$$\mathsf{S} = \{\mathsf{x} \in \mathsf{A} : \mathsf{P}(\mathsf{x})\}$$

*in the domain of P, usually called the "universe" U

A =

C =

$$A \cup B = \{ x : (x \in A) \lor (x \in B) \}$$
 Union

$$A \cap B = \{ x : (x \in A) \land (x \in B) \}$$
 Intersection

$$A \setminus B = \{ x : (x \in A) \land (x \notin B) \}$$

$$A = \{1, 2, 3\}$$

$$B = \{3, 5, 6\}$$

$$C = \{3, 4\}$$

$$[6] = \{3\} = \{1, 2\}$$

$$A \bigoplus B = \{ x : (x \in A) \bigoplus (x \in B) \}$$

Symmetric Difference

$$\overline{A} = \{ x : x \notin A \}$$

(with respect to universe U)

Complement

A =
$$\{1, 2, 3\}$$

B = $\{1, 2, 4, 6\}$
Universe:
U = $\{1, 2, 3, 4, 5, 6\}$

A ⊕ B = {3, 4, 6} Ā = {4,5,6}

It's Boolean algebra again

- Definition for \cup based on \vee

• Definition for \cap based on \land

- Complement works like \neg

$\overline{A \cup B} = \overline{A} \cap \overline{B}$

$\overline{A\cap B}=\bar{A}\cup\bar{B}$

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^{C}$. Then, by definition of complement, we have $\neg (x \in A \cup B)$. The latter is equivalent to $\neg (x \in A \lor x \in B)$, which is equivalent to $\neg (x \in A) \land \neg (x \in B)$ by De Morgan's law. We then have $x \in A^{C}$ and $x \in B^{C}$, by the definition of complement, so we have $x \in A^{C} \cap B^{C}$ by the definition of intersection.

To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$ Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$ Then, $x \in A^C \cap B^C$. Suppose $x \in A^C \cap B^C$. Then, by definition of intersection, we have $x \in A^C$ and $x \in B^C$. That is, we have $\neg (x \in A) \land \neg (x \in B)$, which is equivalent to $\neg(x \in A \lor x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in (A \cup B)^C$, by the definition of complement. I

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

The stated bi-condition holds since:

 $x \in (A \cup B)^{C} \equiv \neg (x \in A \cup B) \qquad \text{def of } -^{C}$ $\equiv \neg (x \in A \lor x \in B) \qquad \text{def of } \cup$ $\equiv \neg (x \in A) \land \neg (x \in B) \qquad \text{De Morgan}$ $\equiv x \in A^{C} \land x \in B^{C} \qquad \text{def of } -^{C}$ $\equiv x \in A^{C} \cap B^{C} \qquad \text{def of } \cap$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

• Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(\mathsf{Days})=?$

$\mathcal{P}(\emptyset)$ =?

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(Days) = \{\{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset\}\}$

 $\mathcal{P}(\varnothing) = \{\varnothing\} \neq \varnothing$

$$A \times B = \{ (a, b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

$$A \times B = \{ (a, b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

What is $A \times \emptyset$?

$$A \times B = \{ (a, b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

 $A \times \emptyset = \{(a, b) : a \in A \land b \in \emptyset\} = \{(a, b) : a \in A \land F\} = \emptyset$

Representing Sets Using Bits

- Suppose universe U is $\{1, 2, ..., n\}$
- Can represent set $B \subseteq U$ as a vector of bits: $b_1 b_2 \dots b_n$ where $b_i = 1$ when $i \in B$ $b_i = 0$ when $i \notin B$
 - Called the *characteristic vector* of set B
- Given characteristic vectors for A and B
 What is characteristic vector for A ∪ B? A ∩ B?

 $\begin{array}{r} 01101101 \\ {\scriptstyle \bigvee} 00110111 \\ 01111111 \end{array}$

00101010 <hr/>
<h

⊕ 01101101
 ⊕ 00110111
 01011010

Java:	z=x y
Java:	z=x&y
Java:	z=x^y

• If x and y are bits: $(x \oplus y) \oplus y = ?$

• What if x and y are bit-vectors?

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.

- Alice and Bob privately share random n-bit vector K
 - Eve does not know K
- Later, Alice has n-bit message m to send to Bob
 - Alice computes $C = m \oplus K$
 - Alice sends C to Bob
 - Bob computes $m = C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that $S \in S$...

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that $S \in S$. Then, by definition of $S, S \notin S$, but that's a contradiction.

Suppose for contradiction that $S \notin S$. Then, by definition of the set $S, S \in S$, but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."