CSE 311: Foundations of Computing

Lecture 10: English proofs and proof strategies

THIS IS GOING TO BE ONE OF THOSE WEIRD, DARK-MAGIC PROOFS,
ISN'T IT? I CANTELL.

NOW, LET'S ASSUME THE CORRECT ANSLUER WILL EVENTUALLY BE WRITEN ON THIS BOARD AT THE COORDNATES (x, y). IF WE-

Recap from last lecture: Inference proofs

$\begin{array}{ll} \\ \text { Intro } \exists & \mathrm{P}(\mathrm{c}) \text { for some } \mathrm{c} \\ \therefore \quad \exists \mathrm{xP}(\mathrm{x})\end{array}$

Intro \forall	"Let a be arbitrary*" $\ldots \mathrm{P}(\mathrm{a})$
$\therefore \quad \forall \mathrm{P}(\mathrm{x})$	

$\operatorname{Elim} \forall \frac{\forall \mathrm{xP}(\mathrm{x})}{\therefore \mathrm{P}(\mathrm{a}) \text { for any a }}$

$\operatorname{Elim} \exists$	$\exists \mathrm{xP}(\mathrm{x})$
$\therefore \mathrm{P}(\mathrm{c})$ for some special** c	

Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

$$
\begin{aligned}
& \text { Even }(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Recap from last lecture: Inference proofs

Intro \exists
$\quad \mathrm{P}(\mathrm{c})$ for some c
$\therefore \quad \exists \mathrm{xP}(\mathrm{x})$

$$
\text { Intro } \forall \frac{\text { "Let a be arbitrary*"...P(a) }}{\therefore \quad \forall \mathrm{xP}(\mathrm{x})}
$$

Elim $\forall \frac{\forall \mathrm{xP}(\mathrm{x})}{\therefore \mathrm{P}(\mathrm{a}) \text { for any a }}$

$\lim \exists$	$\exists \mathrm{xP}(\mathrm{x})$
$\therefore \mathrm{P}(\mathrm{c})$ for some special** c	

Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(a=2 y)$
$2.3 \mathrm{a}=2 \mathrm{~b}$
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right) \quad$ Algebra
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even $\left(\mathbf{a}^{2}\right)$
2. Even $(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$
$\operatorname{Even}(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$
Domain: Integers
Def. Even
Elim \exists : b special depends on a
Intro \exists rule Used $a^{2}=2 \mathrm{c}$ for $\mathrm{c}=2 \mathrm{~b}^{2}$
Definition of Even
Direct proof rule
Intro $\forall: 1,2$

English Proofs

- We often write proofs in English rather than as fully formal proofs
- They are more natural to read
- English proofs follow the structure of the corresponding formal proofs
- Formal proof methods help to understand how proofs really work in English...
... and give clues for how to produce them.

Formal Proofs

- In principle, formal proofs are the standard for what it means to be "proven" in mathematics
- almost all math (and theory CS) done in Predicate Logic
- But they are tedious and impractical
- e.g., applications of commutativity and associativity
- Russell \& Whitehead's formal proof that 1+1 = 2 is several hundred pages long we allowed ourselves to cite "Arithmetic", "Algebra", etc.
- Similar situation exists in programming...

Programming

$\% \mathrm{a}=$ add \%i, 1
$\% \mathrm{~b}=$ mod \%a, \%n
$\% \mathrm{c}=$ add \%arr, \%b
$\% \mathrm{~d}=$ load \%c
$\% \mathrm{e}=$ add \%arr, \%i
store \%e, \%d
$\operatorname{arr}[i]=\operatorname{arr}[(i+1) \% n] ;$

Assembly Language
High-level Language

Programming vs Proofs

$\% \mathrm{a}=$ add \%i, 1
$\% \mathrm{~b}=$ mod \%a, \%n
$\% \mathrm{c}=$ add \%arr, \%b
$\% \mathrm{~d}=$ load \%c
$\% \mathrm{e}=$ add \%arr, \%i
store \%e, \%d

Assembly Language for Programs

Given
Given
\wedge Elim: 1
Double Negation: 4
V Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs

Proofs

Given
Given
\wedge Elim: 1
Double Negation: 4
V Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs
what is the "Java" for proofs?

High-level Language
for Proofs

Proofs

Given
Given
\wedge Elim: 1
Double Negation: 4
English
V Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs

High-level Language
for Proofs

Proofs

- Formal proofs follow simple well-defined rules and should be easy for a machine to check
- as assembly language is easy for a machine to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
- also easy to check with practice
(almost all actual math and theory CS is done this way)
- English proof is correct if the reader believes they could translate it into a formal proof
(the reader is the "compiler" for English proofs)

Last class: Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(a=2 y)$
2.3 a $=2 b$
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right)$
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even(a^{2})
2. Even $(\mathbf{a}) \rightarrow$ Even $\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Assumption
Definition of Even
Elim \exists : b special depends on a
Algebra
Intro \exists rule
Definition of Even
Direct proof rule
Intro \forall : 1,2

English Proof: Even and Odd

$\operatorname{Even}(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$
Domain: Integers

Prove "The square of every even integer is even."

Let a be an arbitrary integer.
Suppose a is even.
Then, by definition, $a=2 b$ for some integer b (dep on a).

Squaring both sides, we get $a^{2}=4 b^{2}=2\left(2 b^{2}\right)$.

So a^{2} is, by definition, even.

Since a was arbitrary, we have shown that the square of every even number is even.

1. Let a be an arbitrary integer

> 2.1 Even(a) Assumption
$2.2 \exists y(a=2 y) \quad$ Definition
$2.3 \quad \mathrm{a}=2 \mathrm{~b} \quad \mathrm{~b}$ special depends on a
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right)$ Algebra
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 $\operatorname{Even}\left(\mathrm{a}^{2}\right) \quad$ Definition
2. $\operatorname{Even}(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathrm{a}^{2}\right)$
3. $\forall \mathrm{x}\left(\operatorname{Even}(\mathrm{x}) \rightarrow \operatorname{Even}\left(\mathrm{x}^{2}\right)\right)$

English Proof: Even and Odd

Prove "The square of every even integer is even."

Proof: Let a be an arbitrary integer. Suppose a is even.
Then, by definition, $a=2 b$ for some integer b (depending on a). Squaring both sides, we get $a^{2}=4 b^{2}=$ $2\left(2 b^{2}\right)$. So a^{2} is, by definition, is even.

Since a was arbitrary, we have shown that the square of every even number is even.

Predicate Definitions
 $\operatorname{Even}(x) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Even and Odd

Predicate Definitions
Even $(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary integers. Suppose that both are odd.

Then, $x=2 a+1$ for some integer a (depending on x) and $y=2 b+1$ for some integer b (depending on x). Their sum is $x+y=(2 a+1)+(2 b+1)=2 a+$ $2 b+2=2(a+b+1)$, so $x+y$ is, by definition, even.
Since x and y were arbitrary, the sum of any two odd integers is even.

English Proof: Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, $x=2 a+1$ for some integer a (depending on x) and $y=2 b+1$ for some integer b (depending on x).

Their sum is $x+y=\ldots=2(a+b+1)$
so $x+y$ is, by definition, even.
Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

2.1	$\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})$	Assumption
2.2	$\operatorname{Odd}(\mathbf{x})$	Elim \wedge : 2.1
2.3	Odd(y)	Elim ^: 2.1
2.4	$\exists \mathrm{z}(\mathrm{x}=2 \mathrm{z}+1)$	Def of Odd: 2.2
2.5	$x=2 a+1$	Elim \exists : 2.4 (a dep x)
2.5	$\exists \mathrm{z}(\mathrm{y}=2 \mathrm{z}+1)$	Def of Odd: 2.3
2.6	$y=2 b+1$	Elim 3 : 2.5 (b dep y)
2.7	$x+y=\ldots=2(a+b+1)$	Algebra
2.8	$\exists z(x+y=2 z)$	Intro 3 : 2.4
2.9	Even($\mathrm{x}+\mathrm{y}$)	Def of Even

2. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathrm{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y})$
3. $\forall \mathrm{x} \forall \mathrm{y}((\operatorname{Odd}(\mathrm{x}) \wedge \operatorname{Odd}(\mathrm{y})) \rightarrow \operatorname{Even}(\mathrm{x}+\mathbf{y}))$

Lecture 10 Activity

- You will be assigned to breakout rooms. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF
- Consider the statement:

The sum of two even numbers is even.

- Recall that an integer x is even if and only if there is an integer z with $x=2 z$.
- Please do the following

1. Write the statement in predicate logic
2. Write an English proof

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login with your UW identity

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary integers. Suppose that both are odd. Then, $x=2 a+1$ for some integer a (depending on x) and $y=2 b+1$ for some integer b (depending on x). Their sum is $x+y=(2 a+1)+(2 b+$ 1) $=2 a+2 b+2=2(a+b+1)$, so $x+y$ is, by definition, even.
Since x and y were arbitrary, the sum of any two odd integers is even.

Rational Numbers

- A real number x is rational iff there exist integers p and q with $q \neq 0$ such that $x=p / q$.

Rational $(x) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge q \neq 0)$

Rationality

Predicate Definitions
 Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
 Prove: "If x and y are rational, then xy is rational."

Formally, prove $\forall x \forall y((\operatorname{Rational}(x) \wedge \operatorname{Rational}(y)) \rightarrow \operatorname{Rational}(x \cdot y)$

Rationality

Predicate Definitions

Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Prove: "If x and y are rational, then $x y$ is rational."

Proof: Suppose that x and y are rational. Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=c / d$ for some integers c, d, where $\mathrm{d} \neq 0$.
Multiplying, we get that $x y=(a c) /(b d)$. Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, $x y$ is rational.

Rationality

Rational $(\mathrm{x}) \equiv \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Prove: "The product of two rationals is rational."
Proof: Let x and y be arbitrary.
Suppose that x and y are rational. Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=c / d$ for some integers c, d, where $\mathrm{d} \neq 0$.
Multiplying, we get that $x y=(a c) /(b d)$. Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, $x y$ is rational.
Since x and y were arbitrary, we have shown that the product of any two rationals is rational. ■

English Proofs

- High-level language let us work more quickly
- should not be necessary to spill out every detail
- reader checks that the writer is not skipping too much
- examples so far
skipping Intro \wedge and Elim \wedge
not stating existence claims (immediately apply Elim \exists to name the object)
not stating that the implication has been proven ("Suppose X... Thus, Y." says it already)
- (list will grow over time)
- English proof is correct if the reader believes they could translate it into a formal proof
- the reader is the "compiler" for English proofs

Proof Strategies

Proof Strategies: Counterexamples

To prove $\neg \forall x \mathrm{P}(\mathrm{x})$, prove $\exists \neg \mathrm{P}(\mathrm{x})$:

- Works by de Morgan's Law: $\neg \forall x P(x) \equiv \exists x \neg P(x)$
- All we need to do that is find an x where $P(x)$ is false
- This example is called a counterexample to $\forall x P(x)$.

e.g. Prove "Not every prime number is odd"

Proof: 2 is prime but not odd, a counterexample to the claim that every prime number is odd.

Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

$$
\begin{array}{ccc}
& \text { 1.1. } \neg q & \text { Assumption } \\
& \ldots & \\
& \text { 1.3. } \neg p & \\
\text { 1. } \neg q \rightarrow \neg p & \text { Direct Proof Rule } \\
\text { 2. } p \rightarrow q & \text { Contrapositive: } 1
\end{array}
$$

Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

We will prove the contrapositive.
Suppose $\neg q$.

Thus, $\neg p$.
1.1. $\neg q$
‥
1.3. $\neg p$

1. $\neg q \rightarrow \neg p$
2. $p \rightarrow q$

Assumption

Direct Proof Rule
Contrapositive: 1

Proof by Contradiction: One way to prove $\neg \mathrm{p}$

If we assume p and derive F (a contradiction), then we have proven $\neg \mathrm{p}$.
1.1. p Assumption
1.3. F

1. $p \rightarrow F$
2. $\neg p \vee \mathrm{~F}$
3. $\neg p$

Direct Proof rule
Law of Implication: 1
Identity: 2

Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we have proven \neg p.

We will argue by contradiction.

Suppose p.

This shows F, a contradiction.
1.1. p Assumption
1.3. F

1. $p \rightarrow F \quad$ Direct Proof rule
2. $\neg p \vee F \quad$ Law of Implication: 1
3. $\neg p \quad$ Identity: 2

Predicate Definitions
 $\operatorname{Even}(x) \equiv \exists y(x=2 y)$
 Even and Odd $\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Domain of Discourse Integers

Prove: "No integer is both even and odd."
Formally, prove $\neg \exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$

Even and Odd

Predicate Definitions
Even $(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove: "No integer is both even and odd."
Formally, prove $\neg \exists \mathrm{x}(\operatorname{Even}(\mathrm{x}) \wedge \operatorname{Odd}(\mathrm{x}))$
Proof: We work by contradiction. Suppose that x is an integer that is both even and odd.
Then, $x=2 a$ for some integer a and $x=2 b+1$ for some integer b. This means $2 a=2 b+1$ and hence $a=b+1 / 2$.
But two integers cannot differ by $1 / 2$, so this is a contradiction.

A proof with multiples

Definition: An integer y is a strict multiple of x, if $y=a \cdot x$ for some integer a with $a \geq 2$.

```
Predicate Definitions
SMul (x,y) \equiv\existsa(a\geq2^y=ax)
```

Domain of Discourse
Positive Integers

Example: $\operatorname{SMul}(7,21)=T, \operatorname{SMul}(7,22)=F, \operatorname{SMul}(5,5)=F$

A proof with multiples

Definition: An integer y is a strict multiple of x, if $y=a \cdot x$ for some integer a with $a \geq 2$.

```
Predicate Definitions
SMul (x,y) \equiv\existsa(a\geq2^y=ax)
```

Domain of Discourse
Positive Integers

Example: $\operatorname{SMul}(7,21)=T, \operatorname{SMul}(7,22)=F, \operatorname{SMul}(5,5)=F$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

A proof with multiples

Definition: An integer y is a strict multiple of x, if $y=a \cdot x$ for some integer a with $a \geq 2$.

```
Predicate Definitions
SMul (x,y) \equiv\existsa(a\geq2^y=ax)
```

Domain of Discourse
Positive Integers

Example: $\operatorname{SMul}(7,21)=T, \operatorname{SMul}(7,22)=F, \operatorname{SMul}(5,5)=F$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.
$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$

A proof with multiples

$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of Z.

Proof:

A proof with multiples

$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let x be an arbitrary positive integer.

A proof with multiples

$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of Z.

Proof:

Let x be an arbitrary positive integer.
Choose $y=2 x$ which is a strict multiple of x.

A proof with multiples

$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of Z.

Proof:

Let x be an arbitrary positive integer.
Choose $y=2 x$ which is a strict multiple of x.
Let z be an arbitrary positive integer.

A proof with multiples

$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of
Z.

Proof:

Let x be an arbitrary positive integer.
Choose $y=2 x$ which is a strict multiple of x.
Let z be an arbitrary positive integer.
Assume for the sake of contradiction that z is a strict multiple of x and y is a strict multiple of z.

A proof with multiples

$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of
Z.

Proof:

Let x be an arbitrary positive integer.
Choose $y=2 x$ which is a strict multiple of x.
Let z be an arbitrary positive integer.
Assume for the sake of contradiction that z is a strict multiple of x and y is a strict multiple of z.
Hence $z=a x$ and $y=b z$ for some integers a, b with $a \geq 2$
and $b \geq 2$.

A proof with multiples

$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of
z.

Proof:

Let x be an arbitrary positive integer.
Choose $y=2 x$ which is a strict multiple of x.
Let z be an arbitrary positive integer.
Assume for the sake of contradiction that z is a strict multiple of x and y is a strict multiple of z.
Hence $z=a x$ and $y=b z$ for some integers a, b with $a \geq 2$
and $b \geq 2$.
Then $2 x=y=b z=a b x$.

A proof with multiples

$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let x be an arbitrary positive integer.
Choose $y=2 x$ which is a strict multiple of x.
Let z be an arbitrary positive integer.
Assume for the sake of contradiction that z is a strict multiple of x and y is a strict multiple of z.
Hence $z=a x$ and $y=b z$ for some integers a, b with $a \geq 2$
and $b \geq 2$.
Then $2 x=y=b z=a b x$. Dividing by $x \neq 0$ gives $2=a b \geq 4$.
That is a contradiction.

Strategies

- Simple proof strategies already do a lot
- counter examples
- proof by contrapositive
- proof by contradiction
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Applications of Predicate Logic

- Remainder of the course will use predicate logic to prove important properties of interesting objects
- start with math objects that are widely used in CS
- eventually more CS-specific objects
- Encode domain knowledge in predicate definitions
- Then apply predicate logic to infer useful results

Domain of Discourse
Integers

Predicate Definitions
$\operatorname{Even}(x) \equiv \exists y(x=2 \cdot y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1)$

Set Theory

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

$$
\begin{aligned}
& \text { Some simple examples } \\
& A=\{1\} \\
& B=\{1,3,2\} \\
& C=\{\square, 1\} \\
& D=\{\{17\}, 17\} \\
& E=\{1,2,7, \text { cat, dog, } \varnothing, \alpha\}
\end{aligned}
$$

Some Common Sets

\mathbb{N} is the set of Natural Numbers; $\mathbb{N}=\{0,1,2, \ldots\}$
\mathbb{Z} is the set of Integers; $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
\mathbb{Q} is the set of Rational Numbers; e.g. $1 / 2,-17,32 / 48$
\mathbb{R} is the set of Real Numbers; e.g. $1,-17,32 / 48, \pi, \sqrt{2}$
[\mathbf{n}] is the set $\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$ when \mathbf{n} is a natural number
$\}=\varnothing$ is the empty set; the only set with no elements

Sets can be elements of other sets

> For example
> A $=\{\{1\},\{2\},\{1,2\}, \varnothing\}$
> $B=\{1,2\}$

Then $B \in A$.

Definitions

- A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

- A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

- Note: $(A=B) \equiv(A \subseteq B) \wedge(B \subseteq A)$

Definition: Equality

A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\} \\
& D=\{4,3,3\} \\
& E=\{3,4,3\} \\
& F=\{4,\{3\}\}
\end{aligned}
$$

Which sets are equal to each other?

Definition: Subset

A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\}
\end{aligned}
$$

	QUESTIONS
$\varnothing \subseteq A ?$	
$A \subseteq B ?$	
$C \subseteq B ?$	

Building Sets from Predicates

$S=$ the set of all* x for which $P(x)$ is true

$$
S=\{x: P(x)\}
$$

$S=$ the set of all x in A for which $P(x)$ is true

$$
S=\{x \in A: P(x)\}
$$

*in the domain of P, usually called the "universe" U

Set Operations

$A \cup B=\{x:(x \in A) \vee(x \in B)\}$ Union
$A \cap B=\{x:(x \in A) \wedge(x \in B)\}$ Intersection
$A \backslash B=\{x:(x \in A) \wedge(x \notin B)\}$ Set Difference

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,5,6\} \\
& C=\{3,4\}
\end{aligned}
$$

QUESTIONS

Using A, B, C and set operations, make...
[6] =
$\{3\}=$
$\{1,2\}=$

More Set Operations

$A \oplus B=\{x:(x \in A) \oplus(x \in B)\}$

Symmetric Difference

$\bar{A}=\{x: x \notin A\}$
(with respect to universe U)
Complement

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{1,2,4,6\} \\
& \text { Universe: } \\
& U=\{1,2,3,4,5,6\}
\end{aligned}
$$

$$
\begin{aligned}
& A \oplus B=\{3,4,6\} \\
& \bar{A}=\{4,5,6\}
\end{aligned}
$$

It's Boolean algebra again

- Definition for \cup based on \vee
- Definition for \cap based on \wedge
- Complement works like \neg

De Morgan's Laws

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by definition of complement, we have $\neg(x \in A \cup B)$. The latter is equivalent to $\neg(x \in A \vee x \in B)$, which is equivalent to $\neg(x \in A) \wedge \neg(x \in B)$ by De Morgan's law. We then have $x \in A^{C}$ and $x \in B^{C}$, by the definition of complement, so we have $x \in A^{C} \cap B^{C}$ by the definition of intersection.

$$
\begin{aligned}
& \text { Proof technique: } \\
& \text { To show } C=D \text { show } \\
& x \in \mathrm{C} \rightarrow x \in \mathrm{D} \text { and } \\
& x \in \mathrm{D} \rightarrow x \in \mathrm{C}
\end{aligned}
$$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C} \ldots$. Then, $x \in A^{C} \cap B^{C}$.
Suppose $x \in A^{C} \cap B^{C}$. Then, by definition of intersection, we have $x \in A^{C}$ and $x \in B^{C}$. That is, we have $\neg(x \in A) \wedge \neg(x \in B)$, which is equivalent to $\neg(x \in A \vee x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in(A \cup B)^{C}$, by the definition of complement. ■

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
The stated bi-condition holds since:

$$
\begin{array}{rlr}
x \in(A \cup B)^{C} & \equiv \neg(x \in A \cup B) & \\
& \text { def of }-C \\
& \equiv \neg(x \in A \vee x \in B) & \\
\text { def of } \cup \\
& \equiv \neg(x \in A) \wedge \neg(x \in B) & \\
\text { De Morgan } \\
& \equiv x \in A^{C} \wedge x \in B^{C} & \\
\text { def of }-C \\
\begin{array}{c}
\text { Chains of equivalences } \\
\text { are often easier to read } \\
\text { like this rather than as } \\
\text { English text }
\end{array} & \equiv x \in A^{C} \cap B^{C} & \\
\text { def of } \cap
\end{array}
$$

Distributive Laws

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days)=?
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days $=\{M, W, F\}$ and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=\{\{M, W, F\},\{M, W\},\{M, F\},\{W, F\},\{M\},\{W\},\{F\}, \varnothing\}$

$$
\mathcal{P}(\varnothing)=\{\varnothing\} \neq \varnothing
$$

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

$$
\text { If } \begin{aligned}
& A=\{1,2\}, B=\{a, b, c\}, \text { then } A \times B=\{(1, a),(1, b),(1, c) \\
&(2, a),(2, b),(2, c)\} .
\end{aligned}
$$

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

$$
\text { If } \begin{aligned}
& A=\{1,2\}, B=\{a, b, c\}, \text { then } A \times B=\{(1, a),(1, b),(1, c) \\
&(2, a),(2, b),(2, c)\} .
\end{aligned}
$$

What is $A \times \varnothing$?

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$,
$(2, a),(2, b),(2, c)\}$.
$\boldsymbol{A} \times \varnothing=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \boldsymbol{b} \in \emptyset\}=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \mathbf{F}\}=\varnothing$

Representing Sets Using Bits

- Suppose universe U is $\{1,2, \ldots, n\}$
- Can represent set $B \subseteq U$ as a vector of bits:

$$
\begin{array}{ll}
b_{1} b_{2} \ldots b_{n} \text { where } & b_{i}=1 \text { when } i \in B \\
& b_{i}=0 \text { when } i \notin B
\end{array}
$$

- Called the characteristic vector of set B
- Given characteristic vectors for A and B
- What is characteristic vector for $A \cup B ? A \cap B$?

Bitwise Operations

01101101
 Java: $\quad z=x \mid y$

v 00110111
01111111
00101010 Java: $\quad \mathrm{z}=\mathrm{x} \& \mathrm{y}$
$\wedge 00001111$ 00001010
$01101101 \quad$ Java: $\quad z=x^{\wedge} y$
$\oplus 00110111$
01011010

A Useful Identity

- If x and y are bits: $(x \oplus y) \oplus y=$?
- What if x and y are bit-vectors?

Private Key Cryptography

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.

One-Time Pad

- Alice and Bob privately share random n-bit vector K
- Eve does not know K
- Later, Alice has n-bit message m to send to Bob
- Alice computes $\mathbf{C}=\mathbf{m} \oplus \mathrm{K}$
- Alice sends C to Bob
- Bob computes $m=C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

Russell's Paradox

$$
S=\{x: x \notin x\}
$$

Suppose for contradiction that $S \in S$...

Russell's Paradox

$$
S=\{x: x \notin x\}
$$

Suppose for contradiction that $S \in S$. Then, by definition of $S, S \notin S$, but that's a contradiction.

Suppose for contradiction that $S \notin S$. Then, by definition of the set $S, S \in S$, but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."

