
CSE 311: Foundations of Computing

Lecture 10:  English proofs and proof strategies



Recap from last lecture: Inference proofs

Prove: “The square of every even number is even.”
Formal proof of:  "x (Even(x) ® Even(x2))

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

"x P(x)        
∴ P(a) for any a

P(c) for some c
∴ $x P(x)Intro $ Elim "

“Let a be arbitrary*”...P(a)
∴ "x P(x)

Intro " $x P(x)
∴ P(c) for some special** c

Elim $



Recap from last lecture: Inference proofs

Prove: “The square of every even number is even.”
Formal proof of:  "x (Even(x) ® Even(x2))

1. Let a be an arbitrary integer
2.1   Even(a) Assumpt.
2.2 ∃y (a = 2y) Def. Even
2.3   a = 2b Elim $: b special depends on a
2.4   a2 = 4b2 = 2(2b2)     Algebra
2.5 ∃y (a2 = 2y) Intro $ rule
2.6  Even(a2) Definition of Even

2.   Even(a)®Even(a2) Direct proof rule
3.   "x (Even(x)®Even(x2))         Intro ": 1,2

Used a2 = 2c for c=2b2

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

"x P(x)        
∴ P(a) for any a

P(c) for some c
∴ $x P(x)Intro $ Elim "

“Let a be arbitrary*”...P(a)
∴ "x P(x)

Intro " $x P(x)
∴ P(c) for some special** c

Elim $



English Proofs

• We often write proofs in English rather than 
as fully formal proofs
– They are more natural to read

• English proofs follow the structure of the 
corresponding formal proofs
– Formal proof methods help to understand how 

proofs really work in English...
... and give clues for how to produce them.



Formal Proofs

• In principle, formal proofs are the standard for 
what it means to be “proven” in mathematics
– almost all math (and theory CS) done in Predicate Logic

• But they are tedious and impractical
– e.g., applications of commutativity and associativity
– Russell & Whitehead’s formal proof that 1+1 = 2 is 

several hundred pages long
we allowed ourselves to cite “Arithmetic”, “Algebra”, etc.

• Similar situation exists in programming...



Programming

%a = add %i, 1
%b = mod %a, %n
%c = add %arr, %b
%d = load %c
%e = add %arr, %i
store %e, %d

Assembly Language

arr[i] = arr[(i+1) % n];

High-level Language



Programming vs Proofs

%a = add %i, 1
%b = mod %a, %n
%c = add %arr, %b
%d = load %c
%e = add %arr, %i
store %e, %d

Assembly Language
for Programs

Given
Given
∧ Elim: 1
Double Negation: 4
∨ Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs



Proofs

Given
Given
∧ Elim: 1
Double Negation: 4
∨ Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs

what is the “Java”
for proofs?

High-level Language
for Proofs



Proofs

Given
Given
∧ Elim: 1
Double Negation: 4
∨ Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs

English

High-level Language
for Proofs



Proofs

• Formal proofs follow simple well-defined rules and 
should be easy for a machine to check
– as assembly language is easy for a machine to execute

• English proofs correspond to those rules but are 
designed to be easier for humans to read
– also easy to check with practice

(almost all actual math and theory CS is done this way)

– English proof is correct if the reader believes they could 
translate it into a formal proof

(the reader is the “compiler” for English proofs)



Last class: Even and Odd

Prove: “The square of every even number is even.”
Formal proof of:  "x (Even(x) ® Even(x2))

1. Let a be an arbitrary integer
2.1   Even(a) Assumption
2.2 ∃y (a = 2y) Definition of Even
2.3   a = 2b Elim $: b special depends on a
2.4   a2 = 4b2 = 2(2b2) Algebra
2.5 ∃y (a2 = 2y) Intro $ rule
2.6  Even(a2) Definition of Even

2.   Even(a)®Even(a2) Direct proof rule
3.   "x (Even(x)®Even(x2))         Intro ": 1,2

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 



English Proof: Even and Odd

Prove “The square of every even integer is even.”

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2   ∃y (a = 2y) Definition
2.3   a = 2b b special depends on a

2.4   a2 = 4b2 = 2(2b2) Algebra

2.5 ∃y (a2 = 2y)
2.6  Even(a2) Definition

2.   Even(a)®Even(a2)
3.   "x (Even(x)®Even(x2))

Let a be an arbitrary integer. 

Suppose a is even.

Then, by definition, a = 2b for 
some integer b (dep on a).

Squaring both sides, we get 
a2 = 4b2 = 2(2b2). 

So a2 is, by definition, even.

Since a was arbitrary, we have 
shown that the square of every 
even number is even.



English Proof: Even and Odd

Prove “The square of every even integer is even.”

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

Proof: Let a be an arbitrary integer. Suppose a is even.

Then, by definition, a = 2b for some integer b
(depending on a). Squaring both sides, we get a2 = 4b2 = 
2(2b2). So a2 is, by definition, is even.

Since a was arbitrary, we have shown that the square of 
every even number is even.



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y))



Even and Odd

Prove “The sum of two odd numbers is even.”

Proof: Let x and y be arbitrary integers. Suppose that 
both are odd.
Then, 𝑥 = 2𝑎 + 1 for some integer 𝑎 (depending on 𝑥) 
and 𝑦 = 2𝑏 + 1 for some integer 𝑏 (depending on 𝑥). 
Their sum is 𝑥 + 𝑦 = 2𝑎 + 1 + 2𝑏 + 1 = 2𝑎 +
2𝑏 + 2 = 2(𝑎 + 𝑏 + 1), so 𝑥 + 𝑦 is, by definition, even.
Since 𝑥 and 𝑦 were arbitrary, the sum of any two odd 
integers is even.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse



English Proof: Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

2.1   Odd(x) ∧	Odd(y) Assumption
2.2   Odd(x)  Elim ∧: 2.1
2.3   Odd(y) Elim ∧: 2.1

2.4   ∃z (x = 2z+1) Def of Odd: 2.2
2.5   x = 2a+1 Elim ∃: 2.4 (a dep x)

2.5   ∃z (y = 2z+1) Def of Odd: 2.3
2.6   y = 2b+1 Elim ∃: 2.5 (b dep y)

2.7   x+y = ... = 2(a+b+1) Algebra

2.8 ∃z (x+y = 2z) Intro ∃: 2.4
2.9  Even(x+y) Def of Even

2.   (Odd(x) ∧	Odd(y)) ® Even(x+y)
3.   "x " y ((Odd(x) ∧	Odd(y)) ® Even(x+y))

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, x = 2a+1 for some integer 
a (depending on x) and
y = 2b+1 for some integer b 
(depending on x).

Their sum is x+y = ... = 2(a+b+1)

so x+y is, by definition, even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



Lecture 10 Activity

• You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share screen, showing this PDF 
• Consider the statement: 

The sum of two even numbers is even.
• Recall that an integer 𝑥 is even if and only if there is an integer 𝑧 with 

𝑥 = 2𝑧.
• Please do the following

1. Write the statement in predicate logic
2. Write an English proof

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login with your UW 
identity

Prove “The sum of two odd numbers 
is even.”

Proof: Let x and y be arbitrary 
integers. Suppose that both are odd.
Then, 𝑥 = 2𝑎 + 1 for some integer 𝑎
(depending on 𝑥) and 𝑦 = 2𝑏 + 1 for 
some integer 𝑏 (depending on 𝑥). Their 
sum is 𝑥 + 𝑦 = 2𝑎 + 1 + (
)

2𝑏 +
1 = 2𝑎 + 2𝑏 + 2 = 2(𝑎 + 𝑏 + 1), so 
𝑥 + 𝑦 is, by definition, even.
Since 𝑥 and 𝑦 were arbitrary, the sum 
of any two odd integers is even.

http://pollev.com/thomas311


Rational Numbers

• A real number x is rational iff there exist integers p
and q with q¹0 such that x=p/q.

Rational(x) º $p $q  ((x=p/q) Ù Integer(p) Ù Integer(q) Ù q¹0)    

Real Numbers
Domain of Discourse



Rationality

Prove: “If x and y are rational, then xy is rational.”
Rational(x) º ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions

Real Numbers
Domain of Discourse

Formally, prove ∀𝑥 ∀𝑦 ( 𝑅𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑥 ∧ 𝑅𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑦 → 𝑅𝑎𝑡𝑖𝑜𝑛𝑎𝑙(𝑥 ⋅ 𝑦)



Rationality

Prove: “If x and y are rational, then xy is rational.”

Proof: Suppose that x and y are rational. Then, x = a/b 
for some integers a, b, where b¹0, and y = c/d for some 
integers c,d, where d¹0. 
Multiplying, we get that xy = (ac)/(bd). Since b and d are 
both non-zero, so is bd. Furthermore, ac and bd are 
integers. By definition, then, xy is rational.

Real Numbers
Domain of Discourse

Rational(x) º ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary.
Suppose that x and y are rational. Then, x = a/b for 
some integers a, b, where b¹0, and y = c/d for some 
integers c,d, where d¹0. 
Multiplying, we get that xy = (ac)/(bd). Since b and d are 
both non-zero, so is bd. Furthermore, ac and bd are 
integers. By definition, then, xy is rational.
Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) º ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Predicate Definitions



English Proofs

• High-level language let us work more quickly
– should not be necessary to spill out every detail
– reader checks that the writer is not skipping too much
– examples so far

skipping Intro ∧ and Elim ∧
not stating existence claims (immediately apply Elim $ to name the object)
not stating that the implication has been proven (“Suppose X... Thus, Y.” says it already)

– (list will grow over time)

• English proof is correct if the reader believes they 
could translate it into a formal proof
– the reader is the “compiler” for English proofs



Proof Strategies



Proof Strategies: Counterexamples

To prove ¬"x P(x), prove  ∃¬P(x) :
• Works by de Morgan’s Law: ¬∀𝒙 𝑷 𝒙 ≡ ∃𝒙¬𝑷(𝒙)
• All we need to do that is find an 𝒙 where 𝑷(𝒙) is false
• This example is called a counterexample to "𝒙 𝑷(𝒙).

e.g. Prove “Not every prime number is odd”

Proof: 2 is prime but not odd, a counterexample 
to the claim that every prime number is odd.



Proof Strategies: Proof by Contrapositive

If we assume ¬q and derive ¬p, then we have proven  
¬q ® ¬p, which is equivalent to proving p ® q.

1.1. ¬𝒒 Assumption
...

1.3. ¬𝒑
1. ¬𝒒® ¬𝒑 Direct Proof Rule
2. 𝒑® 𝒒 Contrapositive: 1                       



Proof Strategies: Proof by Contrapositive

If we assume ¬q and derive ¬p, then we have proven  
¬q ® ¬p, which is equivalent to proving p ® q.

1.1. ¬𝒒 Assumption
...
1.3. ¬𝒑

1. ¬𝒒® ¬𝒑 Direct Proof Rule
2. 𝒑® 𝒒 Contrapositive: 1

We will prove the contrapositive.

Suppose ¬𝒒.
...
Thus, ¬𝒑.



Proof by Contradiction:  One way to prove ¬p

If we assume p and derive F (a contradiction), then 
we have proven ¬p.

1.1.  𝒑 Assumption
...
1.3.  𝗙

1.   𝒑® 𝗙 Direct Proof rule
2.   ¬𝒑 Ú 𝗙 Law of Implication: 1
3.   ¬𝒑 Identity: 2



Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we 
have proven ¬p.

1.1.  𝒑 Assumption
...
1.3.  𝗙

1.   𝒑® 𝗙 Direct Proof rule
2.   ¬𝒑 Ú 𝗙 Law of Implication: 1
3.   ¬𝒑 Identity: 2

We will argue by contradiction.

Suppose 𝒑.
...
This shows 𝗙, a contradiction.



Even and Odd

Prove: “No integer is both even and odd.”
Formally, prove  ¬ $x (Even(x)ÙOdd(x)) 

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse



Even and Odd

Prove: “No integer is both even and odd.”
Formally, prove  ¬ $x (Even(x)ÙOdd(x)) 

Proof: We work by contradiction. Suppose that x is an 
integer that is both even and odd.
Then, x=2a for some integer a and x=2b+1 for some 
integer b. This means 2a=2b+1 and hence a=b+½.
But two integers cannot differ by ½, so this is a 
contradiction.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse



A proof with multiples

SMul (x,y) º ∃𝑎 𝑎 ≥ 2 ∧ 𝑦 = 𝑎𝑥
Predicate Definitions

Positive Integers
Domain of Discourse

Definition: An integer 𝑦 is a strict multiple of 𝑥, 
if 𝑦 = 𝑎 ⋅ 𝑥 for some integer 𝑎 with 𝑎 ≥ 2.

Example: 𝑆𝑀𝑢𝑙 7,21 = 𝑇, 𝑆𝑀𝑢𝑙 7,22 = 𝐹, 𝑆𝑀𝑢𝑙 5,5 = 𝐹



A proof with multiples

SMul (x,y) º ∃𝑎 𝑎 ≥ 2 ∧ 𝑦 = 𝑎𝑥
Predicate Definitions

Positive Integers
Domain of Discourse

Definition: An integer 𝑦 is a strict multiple of 𝑥, 
if 𝑦 = 𝑎 ⋅ 𝑥 for some integer 𝑎 with 𝑎 ≥ 2.

Example: 𝑆𝑀𝑢𝑙 7,21 = 𝑇, 𝑆𝑀𝑢𝑙 7,22 = 𝐹, 𝑆𝑀𝑢𝑙 5,5 = 𝐹

Prove: For all positive integers 𝑥 there is a positive integer 𝑦
that is a strict multiple of 𝑥 and for all positive integer 𝑧 it is 
not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 𝑧.



A proof with multiples

SMul (x,y) º ∃𝑎 𝑎 ≥ 2 ∧ 𝑦 = 𝑎𝑥
Predicate Definitions

Positive Integers
Domain of Discourse

Definition: An integer 𝑦 is a strict multiple of 𝑥, 
if 𝑦 = 𝑎 ⋅ 𝑥 for some integer 𝑎 with 𝑎 ≥ 2.

Example: 𝑆𝑀𝑢𝑙 7,21 = 𝑇, 𝑆𝑀𝑢𝑙 7,22 = 𝐹, 𝑆𝑀𝑢𝑙 5,5 = 𝐹

∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 𝑦
that is a strict multiple of 𝑥 and for all positive integer 𝑧 it is 
not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 𝑧.



A proof with multiples
∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 
𝑦 that is a strict multiple of 𝑥 and for all positive integer 𝑧
it is not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 
𝑧.
Proof:



A proof with multiples
∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 
𝑦 that is a strict multiple of 𝑥 and for all positive integer 𝑧
it is not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 
𝑧.
Proof:
Let 𝑥 be an arbitrary positive integer.



A proof with multiples
∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 
𝑦 that is a strict multiple of 𝑥 and for all positive integer 𝑧
it is not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 
𝑧.
Proof:
Let 𝑥 be an arbitrary positive integer.
Choose 𝑦 = 2𝑥 which is a strict multiple of 𝑥.



A proof with multiples
∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 
𝑦 that is a strict multiple of 𝑥 and for all positive integer 𝑧
it is not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 
𝑧.
Proof:
Let 𝑥 be an arbitrary positive integer.
Choose 𝑦 = 2𝑥 which is a strict multiple of 𝑥.
Let 𝑧 be an arbitrary positive integer.



A proof with multiples
∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 
𝑦 that is a strict multiple of 𝑥 and for all positive integer 𝑧
it is not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 
𝑧.
Proof:
Let 𝑥 be an arbitrary positive integer.
Choose 𝑦 = 2𝑥 which is a strict multiple of 𝑥.
Let 𝑧 be an arbitrary positive integer.
Assume for the sake of contradiction that 𝑧 is a strict 
multiple of 𝑥 and 𝑦 is a strict multiple of 𝑧.



A proof with multiples
∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 
𝑦 that is a strict multiple of 𝑥 and for all positive integer 𝑧
it is not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 
𝑧.
Proof:
Let 𝑥 be an arbitrary positive integer.
Choose 𝑦 = 2𝑥 which is a strict multiple of 𝑥.
Let 𝑧 be an arbitrary positive integer.
Assume for the sake of contradiction that 𝑧 is a strict 
multiple of 𝑥 and 𝑦 is a strict multiple of 𝑧.
Hence 𝑧 = 𝑎𝑥 and 𝑦 = 𝑏𝑧 for some integers 𝑎, 𝑏 with 𝑎 ≥ 2
and 𝑏 ≥ 2. 



A proof with multiples
∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 
𝑦 that is a strict multiple of 𝑥 and for all positive integer 𝑧
it is not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 
𝑧.
Proof:
Let 𝑥 be an arbitrary positive integer.
Choose 𝑦 = 2𝑥 which is a strict multiple of 𝑥.
Let 𝑧 be an arbitrary positive integer.
Assume for the sake of contradiction that 𝑧 is a strict 
multiple of 𝑥 and 𝑦 is a strict multiple of 𝑧.
Hence 𝑧 = 𝑎𝑥 and 𝑦 = 𝑏𝑧 for some integers 𝑎, 𝑏 with 𝑎 ≥ 2
and 𝑏 ≥ 2. 
Then 2𝑥 = 𝑦 = 𝑏𝑧 = 𝑎𝑏𝑥. 



A proof with multiples
∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 
𝑦 that is a strict multiple of 𝑥 and for all positive integer 𝑧
it is not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 
𝑧.
Proof:
Let 𝑥 be an arbitrary positive integer.
Choose 𝑦 = 2𝑥 which is a strict multiple of 𝑥.
Let 𝑧 be an arbitrary positive integer.
Assume for the sake of contradiction that 𝑧 is a strict 
multiple of 𝑥 and 𝑦 is a strict multiple of 𝑧.
Hence 𝑧 = 𝑎𝑥 and 𝑦 = 𝑏𝑧 for some integers 𝑎, 𝑏 with 𝑎 ≥ 2
and 𝑏 ≥ 2. 
Then 2𝑥 = 𝑦 = 𝑏𝑧 = 𝑎𝑏𝑥. Dividing by 𝑥 ≠ 0 gives 2 = 𝑎𝑏 ≥ 4.
That is a contradiction.  



Strategies

• Simple proof strategies already do a lot
– counter examples
– proof by contrapositive
– proof by contradiction

• Later we will cover a specific strategy that applies 
to loops and recursion (mathematical induction)



Applications of Predicate Logic

• Remainder of the course will use predicate logic to 
prove important properties of interesting objects
– start with math objects that are widely used in CS
– eventually more CS-specific objects

• Encode domain knowledge in predicate definitions
• Then apply predicate logic to infer useful results

Even(x) º $y (x = 2⋅y)
Odd(x) º $y (x = 2⋅y + 1)

Predicate Definitions
Integers

Domain of Discourse



Set Theory

Sets are collections of objects called elements. 

Write a ∈	B to say that a is an element of set B,
and a ∉	B to say that it is not.

Some simple examples
A = {1}
B = {1, 3, 2}
C = {☐, 1}
D = {{17}, 17}
E = {1, 2, 7, cat, dog, Æ, α}



Some Common Sets

ℕ is the set of Natural Numbers; ℕ = {0, 1, 2, …}
ℤ is the set of Integers; ℤ = {…, -2, -1, 0, 1, 2, …}
ℚ is the set of Rational Numbers; e.g. ½, -17, 32/48
ℝ is the set of Real Numbers; e.g. 1, -17, 32/48, π, 2
[n] is the set {1, 2, …, n} when n is a natural number
{} = Æ is the empty set; the only set with no elements



Sets can be elements of other sets

For example
A = {{1},{2},{1,2},Æ}
B = {1,2}

Then B ∈	A.



Definitions

• A and B are equal if they have the same elements

• A is a subset of B if every element of A is also in B

• Note:

A = B  º " x (x Î A « x Î B)

A Í B º " x (x Î A ® x Î B)



Definition: Equality

A and B are equal if they have the same elements

A = B  º " x (x Î A « x Î B)

A = {1, 2, 3}
B = {3, 4, 5}
C = {3, 4}
D = {4, 3, 3}
E = {3, 4, 3}
F = {4, {3}}

Which sets are equal to each other?



Definition: Subset

A is a subset of B if every element of A is also in B

A Í B º " x (x Î A ® x Î B)

A = {1, 2, 3}
B = {3, 4, 5}
C = {3, 4}

QUESTIONS
ÆÍ A?
A Í B?
C Í B?



S = the set of all* x for which P(x) is true

S = the set of all x in A for which P(x) is true

Building Sets from Predicates

S = {x : P(x)}

S = {x Î A : P(x)}

*in the domain of P, usually called the “universe” U



Set Operations

𝐴 ∪ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 }

𝐴 ∩ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 }

𝐴 \ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵 }

Union

Intersection

Set Difference

A = {1, 2, 3}
B = {3, 5, 6} 
C = {3, 4}

QUESTIONS
Using A, B, C and set operations, make…
[6] =
{3} =
{1,2} =



More Set Operations

𝐴⊕ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ⊕ 𝑥 ∈ 𝐵 }

0𝐴 = 𝑥 ∶ 𝑥 ∉ 𝐴
(with respect to universe U)                   

Symmetric
Difference

Complement

A = {1, 2, 3}
B = {1, 2, 4, 6} 
Universe:
U = {1, 2, 3, 4, 5, 6}

A ⊕ B = {3, 4, 6}
%𝖠 = {4,5,6}



It’s Boolean algebra again

• Definition for È based on Ú

• Definition for Ç based on Ù

• Complement works like ¬



De Morgan’s Laws



De Morgan’s Laws

Proof technique:
To show C = D show
x Î C ® x Î D and
x Î D ® x Î C

Prove that (𝐴 ∪ 𝐵)E= 𝐴E ∩ 𝐵E

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 E ↔ 𝑥 ∈ 𝐴E ∩ 𝐵E)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 E . Then, by definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter is 
equivalent to ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵), which is equivalent to 
¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵) by De Morgan’s law. We then 
have 𝑥 ∈ 𝐴E and 𝑥 ∈ 𝐵E , by the definition of 
complement, so we have 𝑥 ∈ 𝐴E ∩ 𝐵E by the definition 
of intersection.



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 E = 𝐴E ∩ 𝐵E

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 E ↔ 𝑥 ∈ 𝐴E ∩ 𝐵E)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 E .... Then, 𝑥 ∈ 𝐴E ∩ 𝐵E .
Suppose 𝑥 ∈ 𝐴E ∩ 𝐵E . Then, by definition of 
intersection, we have 𝑥 ∈ 𝐴E and 𝑥 ∈ 𝐵E . That is, we 
have ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵), which is equivalent to 
¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) by De Morgan’s law. The last is 
equivalent to ¬(𝑥 ∈ 𝐴 ∪ 𝐵), by the definition of union, 
so we have shown 𝑥 ∈ 𝐴 ∪ 𝐵 E , by the definition of 
complement.



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 E = 𝐴E ∩ 𝐵E

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 E ↔ 𝑥 ∈ 𝐴E ∩ 𝐵E)	

Proof: Let x be an arbitrary object.
The stated bi-condition holds since:
𝑥 ∈ 𝐴 ∪ 𝐵 E ≡ ¬(𝑥 ∈ 𝐴 ∪ 𝐵) def of -𝐶

≡ ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) def of ∪
≡ ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵) De Morgan
≡ 𝑥 ∈ 𝐴E ∧ 𝑥 ∈ 𝐵E def of -𝐶

≡ 𝑥 ∈ 𝐴E ∩ 𝐵E def of ∩Chains of equivalences 
are often easier to read 
like this rather than as 

English text



Distributive Laws

𝐴 ∩ 𝐵 ∪ 𝐶 = 𝐴 ∩ 𝐵 ∪ 𝐴 ∩ 𝐶
𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ 𝐴 ∪ 𝐶

C

A B

C

A B



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

𝒫(Days)=?

𝒫(Æ)=?

𝒫 𝐴 = { 𝐵 ∶ 𝐵 ⊆ 𝐴 }



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

𝒫(Days)= 𝖬,𝖶, 𝖥 , 𝖬,𝖶 , 𝖬, 𝖥 , 𝖶, 𝖥 , 𝖬 , 𝖶 , 𝖥 ,Æ

𝒫(Æ)={Æ} ≠ Æ

𝒫 𝐴 = { 𝐵 ∶ 𝐵 ⊆ 𝐴 }



Cartesian Product

𝐴×𝐵 = { 𝑎, 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }

ℝ×ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ × ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.



Cartesian Product

𝐴×𝐵 = { 𝑎, 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }

ℝ×ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ × ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

What is 𝑨×∅?



Cartesian Product

𝐴×𝐵 = { 𝑎, 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }

ℝ×ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ × ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

𝑨×∅ ={(𝒂, 𝒃) ∶ 𝒂 ∈ 𝑨 ∧ 𝒃 ∈ ∅} = {(𝒂, 𝒃) ∶ 𝒂 ∈ 𝑨 ∧ 𝗙} = ∅



Representing Sets Using Bits

• Suppose universe 𝑈 is {1,2, … , 𝑛}
• Can represent set 𝐵 ⊆ 𝑈 as a vector of bits: 

𝑏F𝑏G…𝑏H where 𝑏I = 1 when 𝑖 ∈ 𝐵
𝑏I = 0 when 𝑖 ∉ 𝐵

– Called the characteristic vector of set B

• Given characteristic vectors for 𝐴 and 𝐵
–What is characteristic vector for 𝐴 ∪ 𝐵?  𝐴 ∩ 𝐵?



Bitwise Operations

01101101                Java: z=x|y
Ú 00110111

01111111              

00101010 Java: z=x&y
Ù 00001111

00001010  

01101101                Java: z=x^y
Å 00110111

01011010



A Useful Identity

• If x and y are bits:  (x Å y) Å y = ?

• What if x and y are bit-vectors?



Private Key Cryptography

• Alice wants to communicate message secretly to 
Bob so that eavesdropper Eve who hears their 
conversation cannot tell what Alice’s message is.

• Alice and Bob can get together and privately share 
a secret key K ahead of time.



One-Time Pad

• Alice and Bob privately share random n-bit vector K 
– Eve does not know K

• Later, Alice has n-bit message m to send to Bob
– Alice computes  C = m Å K
– Alice sends C to Bob
– Bob computes m = C Å K which is (m Å K) Å K

• Eve cannot figure out m from C unless she can 
guess K



Russell’s Paradox

𝑆 = { 𝑥 ∶ 𝑥 ∉ 𝑥 }
Suppose for contradiction that 𝑆 ∈ 𝑆…



Russell’s Paradox

𝑆 = { 𝑥 ∶ 𝑥 ∉ 𝑥 }
Suppose for contradiction that 𝑆 ∈ 𝑆.  Then, by definition of 
𝑆, 𝑆 ∉ 𝑆, but that’s a contradiction.

Suppose for contradiction that 𝑆 ∉ 𝑆.  Then, by definition of 
the set 𝑆, 𝑆 ∈ 𝑆, but that’s a contradiction, too.

This is reminiscent of the truth value of the statement “This 
statement is false.”


