CSE 311: Foundations of Computing

Lecture 11: Proof strategies \& Set Theory

Recap: Natural language proofs

English proofs:

- More high-level, flexible
- Reader needs to be convinced this corresponds to formal logic proof

Proof strategies:

- Proof by counterexample
- Proof of the contrapositive
- Proof by contradiction

Another proof by Contradiction

Definition: An integer y is a strict multiple of x, if $y=a \cdot x$ for some integer a with $a \geq 2$.

```
Predicate Definitions
SMul (x,y) \equiv\existsa(a\geq2^y=ax)
```

Domain of Discourse
Positive Integers

Example: $\operatorname{SMul}(7,21)=T, \operatorname{SMul}(7,22)=F, \operatorname{SMul}(5,5)=F$

Another proof by Contradiction

Definition: An integer y is a strict multiple of x, if $y=a \cdot x$ for some integer a with $a \geq 2$.

```
Predicate Definitions
SMul (x,y) \equiv\existsa(a\geq2^y=ax)
```

Domain of Discourse
Positive Integers

Example: $\operatorname{SMul}(7,21)=T, \operatorname{SMul}(7,22)=F, \operatorname{SMul}(5,5)=F$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Another proof by Contradiction

Definition: An integer y is a strict multiple of x, if $y=a \cdot x$ for some integer a with $a \geq 2$.

```
Predicate Definitions
SMul (x,y) \equiv\existsa(a\geq2^y=ax)
```

Domain of Discourse
Positive Integers

Example: $\operatorname{SMul}(7,21)=T, \operatorname{SMul}(7,22)=F, \operatorname{SMul}(5,5)=F$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.
$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$

Another proof by Contradiction

$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Another proof by Contradiction

$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of Z.

Proof:

Let x be an arbitrary positive integer.

Another proof by Contradiction

$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let x be an arbitrary positive integer.
Choose $y=2 x$ which is a strict multiple of x.

Another proof by Contradiction

$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of
Z.

Proof:

Let x be an arbitrary positive integer.
Choose $y=2 x$ which is a strict multiple of x.
Let z be an arbitrary positive integer.

Another proof by Contradiction

$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of
Z.

Proof:

1.1 A

Assure
Let x be an arbitrary positive integer.
Choose $y=2 x$ which is a strict multiple of $x .1 A \rightarrow F \quad D P R$ Let z be an arbitrary positive integer. 2.

Lo Assume for the sake of contradiction that z is a strict multiple of x and y is a strict multiple of z.

Another proof by Contradiction

$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of Z.

Proof:

Let x be an arbitrary positive integer.
Choose $y=2 x$ which is a strict multiple of x.
Let z be an arbitrary positive integer.
Assume for the sake of contradiction that z is a strict multiple of x and y is a strict multiple of z. Hence $z=a x$ and $y=b z$ for some integers a, b with $a \geq 2$ and $b \geq 2$.

Another proof by Contradiction

$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of Z.

Proof:

Let x be an arbitrary positive integer.
Choose $y=2 x$ which is a strict multiple of x.
Let z be an arbitrary positive integer.
Assume for the sake of contradiction that z is a strict multiple of x and y is a strict multiple of z. Hence $z=a x$ and $y=b z$ for some integers a, b with $a \geq 2$ and $b \geq 2$.
Then $2 x=y=b z=a b x$.

Another proof by Contradiction

$\forall x \exists y(\operatorname{SMul}(x, y) \wedge \forall z \neg(\operatorname{SMul}(x, z) \wedge \operatorname{SMul}(z, y)))$
Prove: For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of Z.

Proof:

Let x be an arbitrary positive integer.
Choose $y=2 x$ which is a strict multiple of x.
Let z be an arbitrary positive integer.
Assume for the sake of contradiction that z is a strict multiple of x and y is a strict multiple of z. Hence $z=a x$ and $y=b z$ for some integers a, b with $a \geq 2$ and $b \geq 2$.
Then $2 x=y=b z=a b x$. Dividing by $x \neq 0$ gives $2=a b \geq 4$. That is a contradiction.

Strategies

- Simple proof strategies already do a lot
- counter examples
- proof by contrapositive
- proof by contradiction
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Lecture 11 Activity

You will be assigned to breakout rooms. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Prove the statement:

There are no integers x and y for which $2 x+6 y=1$

$$
\exists \times 7 y \quad 2 x+6 y=1
$$

Provide an English proof by contradiction.
AFSOC that there are integers x and such that $2 x+6 y=1$. Dividing both sides by 2 . we get $x+3 y=1 / 2$. Since $x+3 y$ is an integer but $1 / 2$ is $n \cdot t$, this is a contradiction.

Fill out the poll everywhere for Activity Credit! Go to pollev.com/philipmg and login with your UW identity

Applications of Predicate Logic

- Remainder of the course will use predicate logic to prove important properties of interesting objects
- start with math objects that are widely used in CS
- eventually more CS-specific objects
- Encode domain knowledge in predicate definitions
- Then apply predicate logic to infer useful results

Domain of Discourse
Integers

$$
\begin{array}{|l}
\hline \text { Predicate Definitions } \\
\hline \operatorname{Even}(x) \equiv \exists y(x=2 \cdot y) \\
\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1)
\end{array}
$$

Set Theory

Sets are collections of objects called elements.
Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

$$
\begin{aligned}
& \text { Some simple examples } \\
& A=\{1\} \\
& B=\{1,3,2\} \\
& C=\{\square, 1\} \\
& D=\{\{17\}, 17\} \\
& E=\{1,2,7, \text { cat }, \text { dog, } \varnothing, \alpha\}
\end{aligned}
$$

Some Common Sets

\mathbb{N} is the set of Natural Numbers; $\mathbb{N}=\{0,1,2, \ldots\}$
\mathbb{Z} is the set of Integers; $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
\mathbb{Q} is the set of Rational Numbers; e.g. $1 / 2,-17,32 / 48$
\mathbb{R} is the set of Real Numbers; e.g. 1, $-17,32 / 48, \pi, \sqrt{2}$
[n] is the set $\{\mathbf{1}, \mathbf{2}, \ldots, \mathrm{n}\}$ when \mathbf{n} is a natural number
$\}=\varnothing$ is the empty set; the only set with no elements

Sets can be elements of other sets

```
For example
\(A=\{\{1\},\{2\},\{1,2\}, \varnothing\}\)
\(B=\{1,2\}\)
```

Then $B \in A$.

Definitions

- A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

- A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

- Note: $(A=B) \equiv(A \subseteq B) \wedge(B \subseteq A)$

Definition: Equality

A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\} \\
& D=\{4,3,3\} \\
& E=\{3,4,3\} \\
& F=\{4,\{3\}\}
\end{aligned}
$$

Which sets are equal to each other?

Definition: Subset

A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\}
\end{aligned}
$$

$\varnothing \subseteq A ?$
$A \subseteq B ?$
$C \subseteq B ?$

Building Sets from Predicates

$S=$ the set of all* x for which $P(x)$ is true

$$
S=\{x: P(x)\}
$$

$S=$ the set of all x in A for which $P(x)$ is true

$$
S=\{x \in A: P(x)\}
$$

*in the domain of P, usually called the "universe" U

Set Operations

$A \cup B=\{x:(x \in A) \vee(x \in B)\}$ Union
$A \cap B=\{x:(x \in A) \wedge(x \in B)\}$ Intersection
$A \backslash B=\{x:(x \in A) \wedge(x \notin B)\}$ Set Difference

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,5,6\} \\
& C=\{3,4\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Using A, B, C and set operations, make... } \\
& {[6]=} \\
& \{3\}= \\
& \{1,2\}=
\end{aligned}
$$

More Set Operations

$A \oplus B=\{x:(x \in A) \oplus(x \in B)\}$
 Symmetric Difference

$\bar{A}=\{x: x \notin A\}$
(with respect to universe U)
Complement

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{1,2,4,6\} \\
& \text { Universe: } \\
& U=\{1,2,3,4,5,6\}
\end{aligned}
$$

$$
\begin{aligned}
& A \oplus B=\{3,4,6\} \\
& \bar{A}=\{4,5,6\}
\end{aligned}
$$

It's propositional logic again

- Definition for \cup based on \vee
- Definition for \cap based on \wedge
- Complement works like \neg

De Morgan's Laws

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by definition of complement, we have $\neg(x \in A \cup B)$. The latter is equivalent to $\neg(x \in A \vee x \in B)$, which is equivalent to $\neg(x \in A) \wedge \neg(x \in B)$ by De Morgan's law. We then have $x \in A^{C}$ and $x \in B^{C}$, by the definition of complement, so we have $x \in A^{C} \cap B^{C}$ by the definition of intersection.

$$
\begin{aligned}
& \text { Proof technique: } \\
& \text { To show } C=D \text { show } \\
& x \in C \rightarrow x \in D \text { and } \\
& x \in D \rightarrow x \in C
\end{aligned}
$$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C} \ldots$. Then, $x \in A^{C} \cap B^{C}$.
Suppose $x \in A^{C} \cap B^{C}$. Then, by definition of intersection, we have $x \in A^{C}$ and $x \in B^{C}$. That is, we have $\neg(x \in A) \wedge \neg(x \in B)$, which is equivalent to $\neg(x \in A \vee x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in(A \cup B)^{C}$, by the definition of complement.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
The stated bi-condition holds since:

$x \in(A \cup B)^{C}$	$\equiv \neg(x \in A \cup B)$		def of $-C$
	$\equiv \neg(x \in A \vee x \in B)$		def of \cup
	$\equiv \neg(x \in A) \wedge \neg(x \in B)$		De Morgan
	$\equiv x \in A^{C} \wedge x \in B^{C}$		def of $-C$
Chains of equivalences are often easier to read like this rather than as English text	$\equiv x \in A^{C} \cap B^{C}$		def of \cap

Distributive Laws

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days)=?
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days $=\{M, W, F\}$ and consider all the possible sets of days in a week you could ask a question in class
$\mathcal{P}($ Days $)=\{\{M, W, F\},\{M, W\},\{M, F\},\{W, F\},\{M\},\{W\},\{F\}, \varnothing\}$
$\mathcal{P}(\varnothing)=\{\varnothing\} \neq \varnothing$

Cartesian Product

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$,
$(2, a),(2, b),(2, c)\}$.

Cartesian Product

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$,
$(2, a),(2, b),(2, c)\}$.

What is $A \times \varnothing$?

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$,
$(2, a),(2, b),(2, c)\}$.
$\boldsymbol{A} \times \varnothing=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \boldsymbol{b} \in \emptyset\}=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \mathbf{F}\}=\varnothing$

Representing Sets Using Bits

- Suppose universe U is $\{1,2, \ldots, n\}$
- Can represent set $B \subseteq U$ as a vector of bits:

$$
\begin{array}{ll}
b_{1} b_{2} \ldots b_{n} \text { where } & b_{i}=1 \text { when } i \in B \\
& b_{i}=0 \text { when } i \notin B
\end{array}
$$

- Called the characteristic vector of set B
- Given characteristic vectors for A and B
- What is characteristic vector for $A \cup B ? A \cap B$?

Bitwise Operations

01101101
 Java: $\quad \mathbf{z = x} \mid y$

v 00110111
01111111
00101010 Java: $\mathrm{z}=\mathrm{x} \& \mathrm{y}$

- 00001111 00001010

01101101 Java: $z=x \wedge y$
$\oplus 00110111$ 01011010

A Useful Identity

- If x and y are bits: $(x \oplus y) \oplus y=$?
- What if x and y are bit-vectors?

Private Key Cryptography

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.

One-Time Pad

- Alice and Bob privately share random n-bit vector K
- Eve does not know K
- Later, Alice has n-bit message m to send to Bob
- Alice computes $\mathbf{C}=\mathbf{m} \oplus \mathrm{K}$
- Alice sends C to Bob
- Bob computes $m=C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

Russell's Paradox

$$
S=\{x: x \notin x\}
$$

Suppose for contradiction that $S \in S$...

Russell's Paradox

$$
S=\{x: x \notin x\}
$$

Suppose for contradiction that $S \in S$. Then, by definition of $S, S \notin S$, but that's a contradiction.

Suppose for contradiction that $S \notin S$. Then, by definition of the set $S, S \in S$, but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."

