
CSE 311: Foundations of Computing

Lecture 11: Proof strategies & Set Theory 



Recap: Natural language proofs

English proofs:

• More high-level, flexible

• Reader needs to be convinced this corresponds to formal 

logic proof

Proof strategies:

• Proof by counterexample

• Proof of the contrapositive

• Proof by contradiction



Another proof by Contradiction

SMul (x,y)  ∃𝑎 𝑎 ≥ 2 ∧ 𝑦 = 𝑎𝑥

Predicate Definitions

Positive Integers
Domain of Discourse

Definition: An integer 𝑦 is a strict multiple of 𝑥, 

if 𝑦 = 𝑎 ⋅ 𝑥 for some integer 𝑎 with 𝑎 ≥ 2.

Example: 𝑆𝑀𝑢𝑙 7,21 = 𝑇, 𝑆𝑀𝑢𝑙 7,22 = 𝐹, 𝑆𝑀𝑢𝑙 5,5 = 𝐹



Another proof by Contradiction

SMul (x,y)  ∃𝑎 𝑎 ≥ 2 ∧ 𝑦 = 𝑎𝑥

Predicate Definitions

Positive Integers
Domain of Discourse

Definition: An integer 𝑦 is a strict multiple of 𝑥, 

if 𝑦 = 𝑎 ⋅ 𝑥 for some integer 𝑎 with 𝑎 ≥ 2.

Example: 𝑆𝑀𝑢𝑙 7,21 = 𝑇, 𝑆𝑀𝑢𝑙 7,22 = 𝐹, 𝑆𝑀𝑢𝑙 5,5 = 𝐹

Prove: For all positive integers 𝑥 there is a positive integer 𝑦
that is a strict multiple of 𝑥 and for all positive integer 𝑧 it is 

not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 𝑧.



Another proof by Contradiction

SMul (x,y)  ∃𝑎 𝑎 ≥ 2 ∧ 𝑦 = 𝑎𝑥

Predicate Definitions

Positive Integers
Domain of Discourse

Definition: An integer 𝑦 is a strict multiple of 𝑥, 

if 𝑦 = 𝑎 ⋅ 𝑥 for some integer 𝑎 with 𝑎 ≥ 2.

Example: 𝑆𝑀𝑢𝑙 7,21 = 𝑇, 𝑆𝑀𝑢𝑙 7,22 = 𝐹, 𝑆𝑀𝑢𝑙 5,5 = 𝐹

∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 𝑦
that is a strict multiple of 𝑥 and for all positive integer 𝑧 it is 

not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 𝑧.



Another proof by Contradiction

∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 

𝑦 that is a strict multiple of 𝑥 and for all positive integer 𝑧
it is not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 

𝑧.

Proof:



Another proof by Contradiction

∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 

𝑦 that is a strict multiple of 𝑥 and for all positive integer 𝑧
it is not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 

𝑧.

Proof:

Let 𝑥 be an arbitrary positive integer.



Another proof by Contradiction

∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 

𝑦 that is a strict multiple of 𝑥 and for all positive integer 𝑧
it is not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 

𝑧.

Proof:

Let 𝑥 be an arbitrary positive integer.

Choose 𝑦 = 2𝑥 which is a strict multiple of 𝑥.



Another proof by Contradiction

∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 

𝑦 that is a strict multiple of 𝑥 and for all positive integer 𝑧
it is not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 

𝑧.

Proof:

Let 𝑥 be an arbitrary positive integer.

Choose 𝑦 = 2𝑥 which is a strict multiple of 𝑥.

Let 𝑧 be an arbitrary positive integer.



Another proof by Contradiction

∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 

𝑦 that is a strict multiple of 𝑥 and for all positive integer 𝑧
it is not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 

𝑧.

Proof:

Let 𝑥 be an arbitrary positive integer.

Choose 𝑦 = 2𝑥 which is a strict multiple of 𝑥.

Let 𝑧 be an arbitrary positive integer.

Assume for the sake of contradiction that 𝑧 is a strict 

multiple of 𝑥 and 𝑦 is a strict multiple of 𝑧.



Another proof by Contradiction

∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 

𝑦 that is a strict multiple of 𝑥 and for all positive integer 𝑧
it is not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 

𝑧.

Proof:

Let 𝑥 be an arbitrary positive integer.

Choose 𝑦 = 2𝑥 which is a strict multiple of 𝑥.

Let 𝑧 be an arbitrary positive integer.

Assume for the sake of contradiction that 𝑧 is a strict 

multiple of 𝑥 and 𝑦 is a strict multiple of 𝑧.

Hence 𝑧 = 𝑎𝑥 and 𝑦 = 𝑏𝑧 for some integers 𝑎, 𝑏 with 𝑎 ≥ 2
and 𝑏 ≥ 2. 



Another proof by Contradiction

∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 

𝑦 that is a strict multiple of 𝑥 and for all positive integer 𝑧
it is not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 

𝑧.

Proof:

Let 𝑥 be an arbitrary positive integer.

Choose 𝑦 = 2𝑥 which is a strict multiple of 𝑥.

Let 𝑧 be an arbitrary positive integer.

Assume for the sake of contradiction that 𝑧 is a strict 

multiple of 𝑥 and 𝑦 is a strict multiple of 𝑧.

Hence 𝑧 = 𝑎𝑥 and 𝑦 = 𝑏𝑧 for some integers 𝑎, 𝑏 with 𝑎 ≥ 2
and 𝑏 ≥ 2. 

Then 2𝑥 = 𝑦 = 𝑏𝑧 = 𝑎𝑏𝑥. 



Another proof by Contradiction

∀𝑥 ∃𝑦 (𝑆𝑀𝑢𝑙 𝑥, 𝑦 ∧ ∀𝑧 ¬ 𝑆𝑀𝑢𝑙 𝑥, 𝑧 ∧ 𝑆𝑀𝑢𝑙 𝑧, 𝑦 )

Prove: For all positive integers 𝑥 there is a positive integer 

𝑦 that is a strict multiple of 𝑥 and for all positive integer 𝑧
it is not true that 𝑧 is a multiple of 𝑥 and 𝑦 is a multiple of 

𝑧.

Proof:

Let 𝑥 be an arbitrary positive integer.

Choose 𝑦 = 2𝑥 which is a strict multiple of 𝑥.

Let 𝑧 be an arbitrary positive integer.

Assume for the sake of contradiction that 𝑧 is a strict 

multiple of 𝑥 and 𝑦 is a strict multiple of 𝑧.

Hence 𝑧 = 𝑎𝑥 and 𝑦 = 𝑏𝑧 for some integers 𝑎, 𝑏 with 𝑎 ≥ 2
and 𝑏 ≥ 2. 

Then 2𝑥 = 𝑦 = 𝑏𝑧 = 𝑎𝑏𝑥. Dividing by 𝑥 ≠ 0 gives 2 = 𝑎𝑏 ≥ 4.

That is a contradiction.  



Strategies

• Simple proof strategies already do a lot

– counter examples

– proof by contrapositive

– proof by contradiction

• Later we will cover a specific strategy that applies 

to loops and recursion (mathematical induction)



Lecture 11 Activity

Fill out the poll everywhere for Activity Credit!

Go to pollev.com/philipmg and login with your UW 

identity

You will be assigned to breakout rooms. Please:

• Introduce yourself

• Choose someone to share their screen, showing this PDF

• Prove the statement:

There are no integers x and y for which 2x+6y=1

Provide an English proof by contradiction.

http://pollev.com/philipmg


Applications of Predicate Logic

• Remainder of the course will use predicate logic to 

prove important properties of interesting objects

– start with math objects that are widely used in CS

– eventually more CS-specific objects

• Encode domain knowledge in predicate definitions

• Then apply predicate logic to infer useful results

Even(x)  y (x = 2⋅y)
Odd(x)  y (x = 2⋅y + 1)

Predicate Definitions

Integers
Domain of Discourse



Set Theory

Sets are collections of objects called elements. 

Write a ∈ B to say that a is an element of set B,
and a ∉ B to say that it is not.

Some simple examples
A = {1}
B = {1, 3, 2}
C = {☐, 1}
D = {{17}, 17}
E = {1, 2, 7, cat, dog, , α}



Some Common Sets

ℕ is the set of Natural Numbers; ℕ = {0, 1, 2, …}
ℤ is the set of Integers; ℤ = {…, -2, -1, 0, 1, 2, …}
ℚ is the set of Rational Numbers; e.g. ½, -17, 32/48

ℝ is the set of Real Numbers; e.g. 1, -17, 32/48, π, 2
[n] is the set {1, 2, …, n} when n is a natural number
{} =  is the empty set; the only set with no elements



Sets can be elements of other sets

For example

A = {{1},{2},{1,2},}
B = {1,2}

Then B ∈ A.



Definitions

• A and B are equal if they have the same elements

• A is a subset of B if every element of A is also in B

• Note:

A = B    x (x  A  x  B)

A  B   x (x  A → x  B)



Definition: Equality

A and B are equal if they have the same elements

A = B    x (x  A  x  B)

A = {1, 2, 3}
B = {3, 4, 5}
C = {3, 4}
D = {4, 3, 3}
E = {3, 4, 3}
F = {4, {3}}

Which sets are equal to each other?



Definition: Subset

A is a subset of B if every element of A is also in B

A  B   x (x  A → x  B)

A = {1, 2, 3}
B = {3, 4, 5}
C = {3, 4}

QUESTIONS

  A?
A  B?
C  B?



S = the set of all* x for which P(x) is true

S = the set of all x in A for which P(x) is true

Building Sets from Predicates

S = {x : P(x)}

S = {x  A : P(x)}

*in the domain of P, usually called the “universe” U



Set Operations

𝐴 ∪ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 }

𝐴 ∩ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 }

𝐴 \ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵 }

Union

Intersection

Set Difference

A = {1, 2, 3}
B = {3, 5, 6} 
C = {3, 4}

QUESTIONS
Using A, B, C and set operations, make…
[6] =
{3} =
{1,2} =



More Set Operations

𝐴 ⊕ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ⊕ 𝑥 ∈ 𝐵 }

ഥ𝐴 = 𝑥 ∶ 𝑥 ∉ 𝐴
(with respect to universe U)                   

Symmetric

Difference

Complement

A = {1, 2, 3}
B = {1, 2, 4, 6} 
Universe:
U = {1, 2, 3, 4, 5, 6}

A ⊕ B = {3, 4, 6}
ഥ𝖠 = {4,5,6}



It’s propositional logic again

• Definition for  based on 

• Definition for  based on 

• Complement works like 



De Morgan’s Laws



De Morgan’s Laws

Proof technique:

To show C = D show

x  C → x  D and

x  D → x  C

Prove that (𝐴 ∪ 𝐵)𝐶= 𝐴𝐶 ∩ 𝐵𝐶

Formally, prove ∀x (𝑥 ∈ 𝐴 ∪ 𝐵 𝐶 ↔ 𝑥 ∈ 𝐴𝐶 ∩ 𝐵𝐶 ) 

Proof: Let x be an arbitrary object.

Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 𝐶 . Then, by definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter is 
equivalent to ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵), which is equivalent to 
¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵) by De Morgan’s law. We then 
have 𝑥 ∈ 𝐴𝐶 and 𝑥 ∈ 𝐵𝐶 , by the definition of 
complement, so we have 𝑥 ∈ 𝐴𝐶 ∩ 𝐵𝐶 by the definition 
of intersection.



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 𝐶 = 𝐴𝐶 ∩ 𝐵𝐶

Formally, prove ∀x (𝑥 ∈ 𝐴 ∪ 𝐵 𝐶 ↔ 𝑥 ∈ 𝐴𝐶 ∩ 𝐵𝐶 ) 

Proof: Let x be an arbitrary object.

Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 𝐶 .... Then, 𝑥 ∈ 𝐴𝐶 ∩ 𝐵𝐶 .

Suppose 𝑥 ∈ 𝐴𝐶 ∩ 𝐵𝐶 . Then, by definition of 
intersection, we have 𝑥 ∈ 𝐴𝐶 and 𝑥 ∈ 𝐵𝐶 . That is, we 
have ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵), which is equivalent to 
¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) by De Morgan’s law. The last is 
equivalent to ¬(𝑥 ∈ 𝐴 ∪ 𝐵), by the definition of union, 
so we have shown 𝑥 ∈ 𝐴 ∪ 𝐵 𝐶, by the definition of 
complement.



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 𝐶 = 𝐴𝐶 ∩ 𝐵𝐶

Formally, prove ∀x (𝑥 ∈ 𝐴 ∪ 𝐵 𝐶 ↔ 𝑥 ∈ 𝐴𝐶 ∩ 𝐵𝐶 ) 

Proof: Let x be an arbitrary object.

The stated bi-condition holds since:

𝑥 ∈ 𝐴 ∪ 𝐵 𝐶 ≡ ¬(𝑥 ∈ 𝐴 ∪ 𝐵) def of -𝐶

≡ ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) def of ∪

≡ ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵) De Morgan

≡ 𝑥 ∈ 𝐴𝐶 ∧ 𝑥 ∈ 𝐵𝐶 def of -𝐶

≡ 𝑥 ∈ 𝐴𝐶 ∩ 𝐵𝐶 def of ∩Chains of equivalences 
are often easier to read 
like this rather than as 

English text



Distributive Laws

𝐴 ∩ 𝐵 ∪ 𝐶 = 𝐴 ∩ 𝐵 ∪ 𝐴 ∩ 𝐶
𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ 𝐴 ∪ 𝐶

C

A B

C

A B



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 

of days in a week you could ask a question in class

𝒫(Days)=?

𝒫()=?

𝒫 𝐴 = { 𝐵 ∶ 𝐵 ⊆ 𝐴 }



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 

of days in a week you could ask a question in class

𝒫(Days)= 𝖬, 𝖶, 𝖥 , 𝖬, 𝖶 , 𝖬, 𝖥 , 𝖶, 𝖥 , 𝖬 , 𝖶 , 𝖥 ,

𝒫()={} ≠ 

𝒫 𝐴 = { 𝐵 ∶ 𝐵 ⊆ 𝐴 }



Cartesian Product

ℝ × ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ × ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),

(2,a), (2,b), (2,c)}.



Cartesian Product

ℝ × ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ × ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),

(2,a), (2,b), (2,c)}.

What is 𝑨 × ∅?



Cartesian Product

ℝ × ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ × ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),

(2,a), (2,b), (2,c)}.

𝑨 × ∅ ={(𝒂, 𝒃) ∶ 𝒂 ∈ 𝑨 ∧ 𝒃 ∈ ∅} = {(𝒂, 𝒃) ∶ 𝒂 ∈ 𝑨 ∧ 𝗙} = ∅



Representing Sets Using Bits

• Suppose universe 𝑈 is {1,2, … , 𝑛}

• Can represent set 𝐵 ⊆ 𝑈 as a vector of bits: 

𝑏1𝑏2 … 𝑏𝑛 where 𝑏𝑖 = 1 when 𝑖 ∈ 𝐵

𝑏𝑖 = 0 when 𝑖 ∉ 𝐵

– Called the characteristic vector of set B

• Given characteristic vectors for 𝐴 and 𝐵

– What is characteristic vector for 𝐴 ∪ 𝐵?  𝐴 ∩ 𝐵?



Bitwise Operations

01101101                Java: z=x|y

 00110111
01111111              

00101010 Java: z=x&y

 00001111
00001010  

01101101                Java: z=x^y

 00110111
01011010



A Useful Identity

• If x and y are bits:  (x y) y = ?

• What if x and y are bit-vectors?



Private Key Cryptography

• Alice wants to communicate message secretly to 

Bob so that eavesdropper Eve who hears their 

conversation cannot tell what Alice’s message is.

• Alice and Bob can get together and privately share 

a secret key K ahead of time.



One-Time Pad

• Alice and Bob privately share random n-bit vector K 

– Eve does not know K

• Later, Alice has n-bit message m to send to Bob

– Alice computes  C = m  K

– Alice sends C to Bob

– Bob computes m = C  K which is (m  K)  K

• Eve cannot figure out m from C unless she can 

guess K



Russell’s Paradox

Suppose for contradiction that 𝑆 ∈ 𝑆…



Russell’s Paradox

Suppose for contradiction that 𝑆 ∈ 𝑆.  Then, by definition of 

𝑆, 𝑆 ∉ 𝑆, but that’s a contradiction.

Suppose for contradiction that 𝑆 ∉ 𝑆.  Then, by definition of 

the set 𝑆, 𝑆 ∈ 𝑆, but that’s a contradiction, too.

This is reminiscent of the truth value of the statement “This 

statement is false.”


