CSE 311: Foundations of Computing

Lecture 11: Proof strategies & Set Theory

FOR ADDED SECURITY, AFTER
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Recap: Natural language proofs

English proofs:

* More high-level, flexible

 Reader needs to be convinced this corresponds to formal
logic proof

Proof strategies:

* Proof by counterexample

* Proof of the contrapositive
* Proof by contradiction



Another proof by Contradiction

Definition: An integer y is a strict multiple of x,
if y = a - x for some integer a with a = 2.

Predicate Definitions
SMul (x,y)=3a (a =2 Ay = ax)

Domain of Discourse
| Positive Integers

\. J

Example: SMul(7,21) = T, SMul(7,22) = F, SMul(5,5) = F
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Another proof by Contradiction

Definition: An integer y is a strict multiple of x,
if y = a - x for some integer a with a = 2.
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not true that z is a multiple of x and y is a multiple of z.
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Another proof by Contradiction

Vx 3y (SMul(x,y) AVz =(SMul(x, z) A SMul(z,v)))

Prove: For all positive integers x there is a positive integer
y that is a strict multiple of x and for all positive integer z
it is not true that z is a multiple of x and y is a multiple of

Z.
Proof:




Another proof by Contradiction

Vx 3y (SMul(x,y) AVz =(SMul(x, z) A SMul(z,v)))

Prove: For all positive integers x there is a positive integer
y that is a strict multiple of x and for all positive integer z
it is not true that z is a multiple of x and y is a multiple of

Z.

Proof:
Let x be an arbitrary positive integer.




Another proof by Contradiction

Vx 3y (SMul(x,y) AVz =(SMul(x, z) A SMul(z,v)))

Prove: For all positive integers x there is a positive integer
y that is a strict multiple of x and for all positive integer z
it is not true that z is a multiple of x and y is a multiple of
Z.

Proof:
Let x be an arbitrary positive integer.
Choose y = 2x which is a strict multiple of x.




Another proof by Contradiction

Vx 3y (SMul(x,y) AVz =(SMul(x, z) A SMul(z,v)))

Prove: For all positive integers x there is a positive integer
y that is a strict multiple of x and for all positive integer z
it is not true that z is a multiple of x and y is a multiple of
Z.

Proof:

Let x be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.
Let z be an arbitrary positive integer.




Another proof by Contradiction

Vx 3y (SMul(x,y) AVz =(SMul(x, z) A SMul(z,v)))

Prove: For all positive integers x there is a positive integer
y that is a strict multiple of x and for all positive integer z

it is not true that z is a multiple of x and y is a multiple of
Z.

Proof:

Let x be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.

Let z be an arbitrary positive integer.

Assume for the sake of contradiction that z is a strict
multiple of x and vy is a strict multiple of z.




Another proof by Contradiction

Vx 3y (SMul(x,y) AVz =(SMul(x, z) A SMul(z,v)))

Prove: For all positive integers x there is a positive integer
y that is a strict multiple of x and for all positive integer z
it is not true that z is a multiple of x and y is a multiple of
Z.

Proof:

Let x be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.

Let z be an arbitrary positive integer.

Assume for the sake of contradiction that z is a strict
multiple of x and vy is a strict multiple of z.

Hence z = ax and y = bz for some integers a, b with a > 2
and b = 2.




Another proof by Contradiction

Vx 3y (SMul(x,y) AVz =(SMul(x, z) A SMul(z,v)))

Prove: For all positive integers x there is a positive integer
y that is a strict multiple of x and for all positive integer z
it is not true that z is a multiple of x and y is a multiple of
Z.

Proof:

Let x be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.

Let z be an arbitrary positive integer.

Assume for the sake of contradiction that z is a strict
multiple of x and vy is a strict multiple of z.

Hence z = ax and y = bz for some integers a, b with a > 2
and b = 2.

Then 2x =y = bz = abx.




Another proof by Contradiction

Vx 3y (SMul(x,y) AVz =(SMul(x, z) A SMul(z,v)))

Prove: For all positive integers x there is a positive integer
y that is a strict multiple of x and for all positive integer z
it is not true that z is a multiple of x and y is a multiple of
Z.

Proof:

Let x be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.

Let z be an arbitrary positive integer.

Assume for the sake of contradiction that z is a strict
multiple of x and vy is a strict multiple of z.

Hence z = ax and y = bz for some integers a, b with a > 2
and b = 2.

Then 2x = y = bz = abx. Dividing by x + 0 gives 2 = ab = 4.
That is a contradiction. W




Strategies

* Simple proof strategies already do a lot
— counter examples
— proof by contrapositive
— proof by contradiction

* Later we will cover a specific strategy that applies
to loops and recursion (mathematical induction)



Lecture 11 Activity

You will be assigned to breakout rooms. Please:

Introduce yourself
Choose someone to share their screen, showing this PDF

Prove the statement:

There are no integers x and y for which 2x+6y=1

Provide an English proof by contradiction.

Fill out the poll everywhere for Activity Credit!

Go to and login with your UW
identity


http://pollev.com/philipmg

Applications of Predicate Logic

 Remainder of the course will use predicate logic to
prove important properties of interesting objects
— start with math objects that are widely used in CS
— eventually more CS-specific objects

 Encode domain knowledge in predicate definitions
 Then apply predicate logic to infer useful results

Domain of Discourse Predicate Definitions
M7 Even(x) =3y (x = 2-y)
pdd(x) =dy(x=2y+1) )




Set Theory

Sets are collections of objects called elements.

Write 2 € B to say that a is an element of set B,
and a & B to say that it is not.

Some simple examples
A={1}

B={1, 3, 2}

c={, 1}

D={{17}, 17}

E={1, 2, 7, cat, dog, &, a}




Some Common Sets

N is the set of Natural Numbers; N ={0, 1, 2, ...}

Z is the set of Integers; Z =1{...,,-2,-1,0, 1, 2, ...}

Q is the set of Rational Numbers; e.g. %, -17, 32/48
R is the set of Real Numbers; e.g. 1,-17, 32/48, V2
[n] is the set {1, 2, ..., n} when n is a natural number
{} = D is the empty set; the only set with no elements




Sets can be elements of other sets

For example
A = {{1},{2},{1,2},0}
B={1,2}

Then B € A.




Definitions

A and B are equal if they have the same elements

A=B =V x(x e A< x € B)

* Ais a subset of B if every element of Ais also in B

AcB=Vx(xe A—>x e B)

* Note: (A=B)=(A<SB) A(BSA



Definition: Equality

A and B are equal if they have the same elements

A=B =Vx(xe A< xeB)

A={1, 2, 3}
B={3, 4,5}
C=1{3, 4}
D=14,3, 3} Which sets are equal to each other?
E={3, 4,3}
F={4, {3}}




Definition: Subset

A is a subset of B if every element of A is also in B

AcB=V x(xe A— x € B)

A={1, 2, 3}
B ={3, 4, 5}
C=1{3, 4}
QUESTIONS
D A?
AcB?

CcB?




Building Sets from Predicates

S = the set of all” x for which P(x) is true

S ={x:P(x)}

S = the set of all x in A for which P(x) is true

S={x e A:P(x)}

*in the domain of P, usually called the “universe” U



Set Operations

AUB={x:(x€A)V(x €B)} Union

ANB={x:(x€A)A(x €B)} Intersection

A\B={x:(x€A) A(x &€ B)} SetDifference

A=1{1,2,3)
B ={3,5, 6}
C={3,4}

QUESTIONS
Using A, B, C and set operations, make...
[6] =
{3}=
{1,2} =




More Set Operations

ADB={x:(x€A) ®(x€eB)}

Symmetric

A={x:x¢A}

(with respect to universe U)

A={1, 2, 3}

B={1, 2, 4, 6}
Universe:

Uu=1{1, 2, 3,4,5, 6}

A B=1{3, 4,6}
A={4,5,6)}

Difference

Complement



It's propositional logic again

 Definition for U based on v

 Definition for N based on A

« Complement works like —



De Morgan’s Laws

AUB=ANB

ANB=AUB



De Morgan’s Laws

Prove that (A U B)‘= A® n B¢
Formally, prove Vx (x € (AU B)® & x € A n B%)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by definition of
complement, we have —(x € A U B). The latter is
equivalent to =(x € AV x € B), which is equivalent to
—(x € A) A =(x € B) by De Morgan’s law. We then
have x € A® and x € B¢, by the definition of
complement, so we have x € A® N B¢ by the definition

of intersection. Proof technique:
To show C =D show
Xe C—->xeDand
XeD—-o>xeC



De Morgan’s Laws

Prove that (A U B)¢ = A® n B¢
Formally, prove Vx (x € (AU B)® & x € A n B%)

Proof: Let x be an arbitrary object.
Suppose x € (AU B)¢.... Then, x € A® n BC.

Suppose x € A° N B¢. Then, by definition of
intersection, we have x € A® and x € B®. That is, we
have =(x € A) A =(x € B), which is equivalent to
—(x € AV x € B) by De Morgan’s law. The last is
equivalent to —(x € A U B), by the definition of union,
so we have shown x € (4 U B)¢, by the definition of
complement. B




De Morgan’s Laws

Prove that (A U B)¢ = A° n B¢

Formally, prove Vx (x € (AU B)¢ & x € A n B%)

Proof: Let x be an arbitrary object.

The stated bi-condition holds since:
x€E(AUB) =—<(x€ AUB)
-(x € AVx €B)

=—(x €A AN-(x €B)

=x € A Ax € B¢

Chainsofeqlfivalences = x € AC N BC
are often easier to read

like this rather than as
English text

def of -¢
def of U
De Morgan

def of -¢
def of N



Distributive Laws

AN(BUC)=((ANB)U(AnNC)
AU(BNC)=(AUB)n (4 UC(C)

oy (o
o



Power Set

 Power Set of a set A = set of all subsets of A

P(A) ={B:B<S A}

¢ e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)=?

P(D)=?



Power Set

 Power Set of a set A = set of all subsets of A

P(A) ={B:B<S A}

¢ e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)={{M, W, F},{M, W}, {M, F}, {W, F}, {M}, {W3}, {F}, &}

P()={D} # ©



Cartesian Product

AXB={(a,b):a€ A b€EB}

R X R is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
7. X 7.is “the set of all pairs of integers”

If A={1, 2}, B={a, b, c}, then A X B ={(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.



Cartesian Product

AXB={(a,b):a€ A b€EB}

R X R is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
7. X 7.is “the set of all pairs of integers”

If A={1, 2}, B={a, b, c}, then A X B ={(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

What is 4 X 9?



Cartesian Product

AXB={(a,b):a€ A b€EB}

R X R is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
7. X 7.is “the set of all pairs of integers”

If A={1, 2}, B={a, b, c}, then A X B ={(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

AxO={(a,b):a€cAANbed}={(ab):acA NF} =0



Representing Sets Using Bits

* Suppose universe U is {1,2, ..., n}
 Can represent set B € U as a vector of bits:
b:b, ...b,, where b; =1wheni€B
b =0wheni & B
— Called the characteristic vector of set B

 Given characteristic vectors for A and B
— What is characteristic vector for AU B? AN B?



Bitwise Operations

01101101
00110111

01111111

00101010
00001111

D

00001010

01101101
00110111

01011010

Java:

Java:

Java:

z=x |y

Z=X&Yy

Zz=x"y



A Useful Identity

 [f xand yare bits: (x@y)Dy="?

* What if x and y are bit-vectors?



Private Key Cryptography

* Alice wants to communicate message secretly to
Bob so that eavesdropper Eve who hears their
conversation cannot tell what Alice’s message is.

* Alice and Bob can get together and privately share
a secret key K ahead of time.

encrypt : | decrypt i

plaintext | ciphertext . plaintext !
SENDER——»| key |} » | key ——> RECEIVER |
message : ' message |

' |

|

|

o ———————




One-Time Pad

* Alice and Bob privately share random n-bit vector K
— Eve does not know K

e Later, Alice has n-bit message m to send to Bob
— Alice computes C=m D K
— Alice sends C to Bob
— Bob computes m=C® Kwhichis(im @ K) @ K

* Eve cannot figure out m from C unless she can

uess K




Russell’s Paradox

S={x:x€&x}

Suppose for contradiction that S € S...



Russell’s Paradox

S={x:x€&x}

Suppose for contradiction that S € S. Then, by definition of
S,S &5, but that’s a contradiction.

Suppose for contradiction that S € S. Then, by definition of
the set S, S € S, but that’s a contradiction, too.

This is reminiscent of the truth value of the statement “This
statement is false.”



