CSE 311: Foundations of Computing

Lecture 11: Proof strategies & Set Theory

Recap: Natural language proofs

English proofs:

- More high-level, flexible
- Reader needs to be convinced this corresponds to formal logic proof

Proof strategies:

- Proof by counterexample
- Proof of the contrapositive
- Proof by contradiction

<u>Definition:</u> An integer y is a strict multiple of x, if $y = a \cdot x$ for some integer a with $a \ge 2$.

Predicate Definitions

SMul (x,y) $\equiv \exists a (a \ge 2 \land y = ax)$

Domain of Discourse
Positive Integers

Example: SMul(7,21) = T, SMul(7,22) = F, SMul(5,5) = F

<u>Definition:</u> An integer y is a strict multiple of x, if $y = a \cdot x$ for some integer a with $a \ge 2$.

Predicate Definitions

SMul
$$(x,y) \equiv \exists a (a \ge 2 \land y = ax)$$

Domain of DiscoursePositive Integers

Example: SMul(7,21) = T, SMul(7,22) = F, SMul(5,5) = F

<u>Prove:</u> For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

<u>Definition:</u> An integer y is a strict multiple of x, if $y = a \cdot x$ for some integer a with $a \ge 2$.

Predicate Definitions

SMul (x,y)
$$\equiv \exists a (a \ge 2 \land y = ax)$$

Domain of DiscoursePositive Integers

Example: SMul(7,21) = T, SMul(7,22) = F, SMul(5,5) = F

<u>Prove:</u> For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

$$\forall x \exists y (SMul(x,y) \land \forall z \neg (SMul(x,z) \land SMul(z,y)))$$

$$\forall x \exists y (SMul(x, y) \land \forall z \neg (SMul(x, z) \land SMul(z, y)))$$

<u>Prove:</u> For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

$$\forall x \exists y (SMul(x,y) \land \forall z \neg (SMul(x,z) \land SMul(z,y)))$$

<u>Prove:</u> For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let x be an arbitrary positive integer.

$$\forall x \exists y (SMul(x,y) \land \forall z \neg (SMul(x,z) \land SMul(z,y)))$$

<u>Prove:</u> For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let x be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.

$$\forall x \exists y (SMul(x,y) \land \forall z \neg (SMul(x,z) \land SMul(z,y)))$$

<u>Prove:</u> For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let x be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.

Let z be an arbitrary positive integer.

$$\forall x \exists y (SMul(x,y) \land \forall z \neg (SMul(x,z) \land SMul(z,y)))$$

<u>Prove:</u> For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let x be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.

Let z be an arbitrary positive integer.

Assume for the sake of contradiction that z is a strict multiple of x and y is a strict multiple of z.

$$\forall x \exists y (SMul(x,y) \land \forall z \neg (SMul(x,z) \land SMul(z,y)))$$

<u>Prove:</u> For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let x be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.

Let z be an arbitrary positive integer.

Assume for the sake of contradiction that z is a strict multiple of x and y is a strict multiple of z.

Hence z = ax and y = bz for some integers a, b with $a \ge 2$ and $b \ge 2$.

$$\forall x \exists y (SMul(x,y) \land \forall z \neg (SMul(x,z) \land SMul(z,y)))$$

<u>Prove:</u> For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let x be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.

Let z be an arbitrary positive integer.

Assume for the sake of contradiction that z is a strict multiple of x and y is a strict multiple of z.

Hence z = ax and y = bz for some integers a, b with $a \ge 2$ and $b \ge 2$.

Then 2x = y = bz = abx.

$$\forall x \exists y (SMul(x,y) \land \forall z \neg (SMul(x,z) \land SMul(z,y)))$$

<u>Prove:</u> For all positive integers x there is a positive integer y that is a strict multiple of x and for all positive integer z it is not true that z is a multiple of x and y is a multiple of z.

Proof:

Let x be an arbitrary positive integer.

Choose y = 2x which is a strict multiple of x.

Let z be an arbitrary positive integer.

Assume for the sake of contradiction that z is a strict multiple of x and y is a strict multiple of z.

Hence z = ax and y = bz for some integers a, b with $a \ge 2$ and $b \ge 2$.

Then 2x = y = bz = abx. Dividing by $x \neq 0$ gives $2 = ab \geq 4$.

That is a contradiction.

Strategies

- Simple proof strategies already do a lot
 - counter examples
 - proof by contrapositive
 - proof by contradiction
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Lecture 11 Activity

You will be assigned to breakout rooms. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Prove the statement:

There are no integers x and y for which 2x+6y=1

Provide an English proof by contradiction.

Fill out the poll everywhere for Activity Credit!

Go to pollev.com/philipmg and login with your UW identity

Applications of Predicate Logic

- Remainder of the course will use predicate logic to prove <u>important</u> properties of <u>interesting</u> objects
 - start with math objects that are widely used in CS
 - eventually more CS-specific objects
- Encode domain knowledge in predicate definitions
- Then apply predicate logic to infer useful results

Domain of Discourse Integers

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$

Set Theory

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

```
Some simple examples A = \{1\} B = \{1, 3, 2\} C = \{\Box, 1\} D = \{\{17\}, 17\} E = \{1, 2, 7, cat, dog, \varnothing, \alpha\}
```

Some Common Sets

```
N is the set of Natural Numbers; \mathbb{N} = \{0, 1, 2, ...\} \mathbb{Z} is the set of Integers; \mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\} \mathbb{Q} is the set of Rational Numbers; e.g. \frac{1}{2}, -17, 32/48 \mathbb{R} is the set of Real Numbers; e.g. 1, -17, 32/48, \pi, \sqrt{2} [n] is the set \{1, 2, ..., n\} when n is a natural number \{\} = \emptyset is the empty set; the only set with no elements
```

Sets can be elements of other sets

For example

 $A = \{\{1\},\{2\},\{1,2\},\emptyset\}$

 $B = \{1,2\}$

Then $B \in A$.

Definitions

A and B are equal if they have the same elements

$$\mathsf{A} = \mathsf{B} \equiv \forall \ x \ (x \in \mathsf{A} \longleftrightarrow x \in \mathsf{B})$$

A is a subset of B if every element of A is also in B

$$A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$$

• Note: $(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$

Definition: Equality

A and B are equal if they have the same elements

$$A = B \equiv \forall x (x \in A \leftrightarrow x \in B)$$

Which sets are equal to each other?

Definition: Subset

A is a subset of B if every element of A is also in B

$$A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$$

$$A = \{1, 2, 3\}$$

 $B = \{3, 4, 5\}$
 $C = \{3, 4\}$

$\begin{array}{c} \underline{\mathsf{QUESTIONS}} \\ \varnothing \subseteq \mathsf{A?} \\ \mathsf{A} \subseteq \mathsf{B?} \\ \mathsf{C} \subseteq \mathsf{B?} \end{array}$

Building Sets from Predicates

S =the set of all* x for which P(x) is true

$$S = \{x : P(x)\}$$

S =the set of all x in A for which P(x) is true

$$S = \{x \in A : P(x)\}$$

*in the domain of P, usually called the "universe" U

Set Operations

$$A \cup B = \{ x : (x \in A) \lor (x \in B) \}$$
 Union

$$A \cap B = \{ x : (x \in A) \land (x \in B) \}$$
 Intersection

$$A \setminus B = \{ x : (x \in A) \land (x \notin B) \}$$
 Set Difference

$$A = \{1, 2, 3\}$$

 $B = \{3, 5, 6\}$
 $C = \{3, 4\}$

QUESTIONS

Using A, B, C and set operations, make...

$$\{1,2\} =$$

More Set Operations

$$A \oplus B = \{ x : (x \in A) \oplus (x \in B) \}$$

Symmetric Difference

$$\overline{A} = \{ x : x \notin A \}$$
 (with respect to universe U)

Complement

$$A \oplus B = \{3, 4, 6\}$$

 $\overline{A} = \{4,5,6\}$

It's propositional logic again

Definition for ∪ based on ∨

Complement works like ¬

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by definition of complement, we have $\neg(x \in A \cup B)$. The latter is equivalent to $\neg(x \in A \lor x \in B)$, which is equivalent to $\neg(x \in A) \land \neg(x \in B)$ by De Morgan's law. We then have $x \in A^C$ and $x \in B^C$, by the definition of complement, so we have $x \in A^C \cap B^C$ by the definition of intersection.

Proof technique: To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$ Then, $x \in A^C \cap B^C$.

Suppose $x \in A^C \cap B^C$. Then, by definition of intersection, we have $x \in A^C$ and $x \in B^C$. That is, we have $\neg(x \in A) \land \neg(x \in B)$, which is equivalent to $\neg(x \in A \lor x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in (A \cup B)^C$, by the definition of complement. \blacksquare

Prove that
$$(A \cup B)^C = A^C \cap B^C$$

Formally, prove
$$\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$$

Proof: Let x be an arbitrary object.

The stated bi-condition holds since:

$$x \in (A \cup B)^{C} \equiv \neg(x \in A \cup B)$$
 def of $\neg(x \in A \cup B)$ def of $\neg(x \in A \cup x \in B)$ def of $\neg(x \in A) \land \neg(x \in B)$ De Morgan
$$\equiv x \in A^{C} \land x \in B^{C}$$
 def of $\neg(x \in A) \land x \in B^{C}$ def of $\neg(x \in A) \land x \in B^{C}$ def of $\neg(x \in A) \land x \in B^{C}$

are often easier to read like this rather than as English text

Distributive Laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Power Set

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

$$\mathcal{P}(\mathsf{Days})=?$$

$$\mathcal{P}(\varnothing)$$
=?

Power Set

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(Days) = \{\{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset\}\}$$

$$\mathcal{P}(\emptyset) = \{\emptyset\} \neq \emptyset$$

Cartesian Product

$$A \times B = \{ (a,b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A =
$$\{1, 2\}$$
, B = $\{a, b, c\}$, then A × B = $\{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$.

Cartesian Product

$$A \times B = \{ (a,b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A =
$$\{1, 2\}$$
, B = $\{a, b, c\}$, then A × B = $\{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$.

What is $A \times \emptyset$?

Cartesian Product

$$A \times B = \{ (a,b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A =
$$\{1, 2\}$$
, B = $\{a, b, c\}$, then A × B = $\{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$.

$$A \times \emptyset = \{(a,b) : a \in A \land b \in \emptyset\} = \{(a,b) : a \in A \land F\} = \emptyset$$

Representing Sets Using Bits

- Suppose universe U is $\{1,2,\ldots,n\}$
- Can represent set $B \subseteq U$ as a vector of bits:

$$b_1b_2 \dots b_n$$
 where $b_i=1$ when $i \in B$
 $b_i=0$ when $i \notin B$

Called the characteristic vector of set B

- Given characteristic vectors for A and B
 - What is characteristic vector for $A \cup B$? $A \cap B$?

Bitwise Operations

01101101

Java: z=x|y

00101010

Java: z=x&y

∧ 00001111 00001010

01101101

Java: $z=x^y$

A Useful Identity

• If x and y are bits: $(x \oplus y) \oplus y = ?$

What if x and y are bit-vectors?

Private Key Cryptography

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.

One-Time Pad

- Alice and Bob privately share random n-bit vector K
 - Eve does not know K
- Later, Alice has n-bit message m to send to Bob
 - Alice computes C = m ⊕ K
 - Alice sends C to Bob
 - Bob computes $m = C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

Russell's Paradox

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that $S \in S$...

Russell's Paradox

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that $S \in S$. Then, by definition of $S, S \notin S$, but that's a contradiction.

Suppose for contradiction that $S \notin S$. Then, by definition of the set $S, S \in S$, but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."