CSE 311: Foundations of Computing

Lecture 12: More set theory

Recap: Set Theory

- Sets are collections of objects called elements.
- We write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

Examples:

- $A=\{1,2\}, B=\emptyset, C=\{$ cat, 7, dog, $\{1,2\}\}$ are sets

Recap: Set Theory

- Sets are collections of objects called elements.
- We write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.
- Sets A and B are equal if they have the same elements: $A=B \equiv \forall x(x \in A \leftrightarrow x \in B)$
- A set A is a subset of a set B if every element of A is also in $B: A \subseteq B \equiv \forall x(x \in A \rightarrow x \in B)$

Examples:

- $A=\{1,2\}, B=\emptyset, C=\{$ cat, $7, \mathrm{dog},\{1,2\}\}$ are sets
- If $D=\{1,3\}$ and $E=\{1,3,5\}$, then $D \neq E$ and $D \subseteq E$

Building Sets from Predicates**

$S=$ the set of all* x for which $P(x)$ is true

$$
S=\{x: P(x)\}
$$

$S=$ the set of all x in A for which $P(x)$ is true

$$
S=\{x \in A: P(x)\}
$$

*in the domain of P, usually called the "universe" U **also known as "set builder notation"

Set Operations

$A \cup B=\{x:(x \in A) \vee(x \in B)\}$ Union
$A \cap B=\{x:(x \in A) \wedge(x \in B)\}$ Intersection
$A \backslash B=\{x:(x \in A) \wedge(x \notin B)\}$ Set Difference

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,5,6\} \\
& C=\{3,4\}
\end{aligned}
$$

QUESTIONS

Using A, B, C and set operations, make...
[6] =
$\{3\}=$
$\{1,2\}=$

More Set Operations

$A \oplus B=\{x:(x \in A) \oplus(x \in B)\}$

Symmetric Difference

$\bar{A}=\{x: x \notin A\}$
(with respect to universe U)
Complement
Alternative notation for complement: A^{C}

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{1,2,4,6\} \\
& \text { Universe: } \\
& U=\{1,2,3,4,5,6\}
\end{aligned}
$$

$$
\begin{aligned}
& A \oplus B=\{3,4,6\} \\
& \bar{A}=\{4,5,6\}
\end{aligned}
$$

It's propositional logic again

- Definition for \cup based on \vee
- Definition for \cap based on \wedge
- Complement works like \neg

De Morgan's Laws

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by definition of complement, we have $\neg(x \in A \cup B)$. The latter is equivalent to $\neg(x \in A \vee x \in B)$, which is equivalent to $\neg(x \in A) \wedge \neg(x \in B)$ by De Morgan's law. We then have $x \in A^{C}$ and $x \in B^{C}$, by the definition of complement, so we have $x \in A^{C} \cap B^{C}$ by the definition of intersection.

$$
\begin{aligned}
& \text { Proof technique: } \\
& \text { To show } \mathrm{C}=\mathrm{D} \text { show } \\
& x \in \mathrm{C} \rightarrow x \in \mathrm{D} \text { and } \\
& x \in \mathrm{D} \rightarrow x \in \mathrm{C}
\end{aligned}
$$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C} \ldots$. Then, $x \in A^{C} \cap B^{C}$.
Suppose $x \in A^{C} \cap B^{C}$. Then, by definition of intersection, we have $x \in A^{C}$ and $x \in B^{C}$. That is, we have $\neg(x \in A) \wedge \neg(x \in B)$, which is equivalent to $\neg(x \in A \vee x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in(A \cup B)^{C}$, by the definition of complement. ■

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
The stated bi-condition holds since:

$$
\begin{array}{rlr}
x \in(A \cup B)^{C} & \equiv \neg(x \in A \cup B) & \\
& \text { def of }-C \\
& \equiv \neg(x \in A \vee x \in B) & \\
\text { def of } \cup \\
& \equiv \neg(x \in A) \wedge \neg(x \in B) & \\
\text { De Morgan } \\
& \equiv x \in A^{C} \wedge x \in B^{C} & \\
\text { def of }-C \\
\begin{array}{c}
\text { Chains of equivalences } \\
\text { are often easier to read } \\
\text { like this rather than as } \\
\text { English text }
\end{array} & \equiv x \in A^{C} \cap B^{C} & \\
\text { def of } \cap
\end{array}
$$

Use of propositional logic

Meta Theorem: One can translate any = relationship between sets into a propositional logic \equiv by replacing \cap $, \cup,(. .)^{C}$ to \wedge, \vee, \neg.
"Proof": Let x be an arbitrary object. Then the stated bi-condition holds since
$x \in$ left side \equiv replace set ops with propositional logic
三 apply propositional logic equivalence
\equiv replace propositional logic with set ops
$\equiv x \in$ right side

Since x was arbitrary we have shown the sets are equal.

Lecture 12 Activity

- You will be assigned to breakout rooms. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF
- Prove the $2^{\text {nd }}$ De Morgan Law:

For all sets A and B, one has $(A \cap B)^{C}=A^{C} \cup B^{C}$.

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login with your UW identity

```
Prove that (A\cupB\mp@subsup{)}{}{C}=\mp@subsup{A}{}{C}\cap\mp@subsup{B}{}{C}
Proof: Let x be an arbitrary object.
The stated bi-condition holds since:
x\in(A\cupB)C}\equiv\neg(x\inA\cupB
    def of -C
    \equiv\neg(x\inA\veex\inB) def of U
    \equiv\neg(x\inA)\wedge\neg(x\inB) De Morgan
    \equivx\in\mp@subsup{A}{}{C}\wedgex\in\mp@subsup{B}{}{C}\quad\mathrm{ def of -C}
    \equivx\in\mp@subsup{A}{}{C}\cap\mp@subsup{B}{}{C}\quad\mathrm{ def of }\cap
Since \(x\) was arbitrary we have shown the sets are equal.
```


Distributive Laws

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days)=?
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days $=\{M, W, F\}$ and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=\{\{M, W, F\},\{M, W\},\{M, F\},\{W, F\},\{M\},\{W\},\{F\}, \varnothing\}$

$$
\mathcal{P}(\varnothing)=\{\varnothing\} \neq \varnothing
$$

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

$$
\text { If } \begin{aligned}
& A=\{1,2\}, B=\{a, b, c\}, \text { then } A \times B=\{(1, a),(1, b),(1, c) \\
&(2, a),(2, b),(2, c)\} .
\end{aligned}
$$

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

$$
\text { If } \begin{aligned}
& A=\{1,2\}, B=\{a, b, c\}, \text { then } A \times B=\{(1, a),(1, b),(1, c) \\
&(2, a),(2, b),(2, c)\} .
\end{aligned}
$$

What is $A \times \varnothing$?

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$,
$(2, a),(2, b),(2, c)\}$.
$\boldsymbol{A} \times \varnothing=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \boldsymbol{b} \in \emptyset\}=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \mathbf{F}\}=\varnothing$

Representing Sets Using Bits

- Suppose universe U is $\{1,2, \ldots, n\}$
- Can represent set $B \subseteq U$ as a vector of bits:

$$
\begin{array}{ll}
b_{1} b_{2} \ldots b_{n} \text { where } & b_{i}=1 \text { when } i \in B \\
& b_{i}=0 \text { when } i \notin B
\end{array}
$$

- Called the characteristic vector of set B
- Given characteristic vectors for A and B
- What is characteristic vector for $A \cup B ? A \cap B$?

Russell's Paradox

$$
S=\{x: x \notin x\}
$$

Suppose for contradiction that $S \in S$...

Russell's Paradox

$$
S=\{x: x \notin x\}
$$

Suppose for contradiction that $S \in S$. Then, by definition of $S, S \notin S$, but that's a contradiction.

Suppose for contradiction that $S \notin S$. Then, by definition of the set $S, S \in S$, but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
- Cryptography
- Hashing
- Security
- Important tool set

Modular Arithmetic

- Arithmetic over a finite domain
- In computing, almost all computations are over a finite domain

I'm ALIVE!

```
public class Test {
    final static int SEC_IN_YEAR = 364*24*60*60*100;
    public static void main(String args[]) {
            System.out.println(
                "I will be alive for at least " +
                    SEC_IN_YEAR * 101 + " seconds."
        );
    }
}
```


I'm ALIVE!

```
public class Test {
    final static int SEC_IN_YEAR = 364*24*60*60*100;
    public static void main(String args[]) {
            System.out.println(
            "I will be alive for at least " +
            SEC_IN_YEAR * 101 + " seconds."
        );
    }
}
```

```
----jGRASP exec: java Test
I will be alive for at least -186619904 seconds.
    ----jGRASP: operation complete.
```


Divisibility

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:

$$
a \mid b \leftrightarrow \exists k \in \mathbb{Z}(b=k a)
$$

Check Your Understanding. Which of the following are true?
5|1
25 | 5
5|0
$3 \mid 2$
1 | 5
$5 \mid 25$
$0 \mid 5$
$2 \mid 3$

Divisibility

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:

$$
a \mid b \leftrightarrow \exists k \in \mathbb{Z}(b=k a)
$$

Check Your Understanding. Which of the following are true?

| $5 \mid 1$ | $25 \mid 5$ | $5 \mid 0$ |
| :---: | :---: | :---: |c| $3 \mid 2$ |
| :---: |
| $5 \mid 1$ iff $1=5 k$ | | $25 \mid 5$ iff $5=25 k$ | $5 \mid 0$ iff $0=5 k$ | $3 \mid 2$ iff $2=3 k$ |
| :---: | :---: | :---: |
| $1 \mid 5$ | $5 \mid 25$ | $0 \mid 5$ |

Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$
there exist unique integers q, r with $0 \leq r<d$ such that $a=d q+r$.

To put it another way, if we divide d into a, we get a unique quotient $q=a \operatorname{div} d$ and non-negative remainder $r=a \bmod d$

Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$
there exist unique integers q, r with $0 \leq r<d$ such that $a=d q+r$.

To put it another way, if we divide d into a, we get a unique quotient $q=a \operatorname{div} d$ and non-negative remainder $r=a \bmod d$

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
}
Note: \(\mathrm{r} \geq 0\) even if \(\mathrm{a}<0\). Not quite the same as \(\mathbf{a} \% \mathrm{~d}\).
```


Arithmetic, mod 7

$$
\begin{aligned}
& a++_{7} b=(a+b) \bmod 7 \\
& a \times_{7} b=(a \times b) \bmod 7
\end{aligned}
$$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Modular Arithmetic

Definition: "a is congruent to b modulo m"

$$
\begin{aligned}
& \text { For } a, b, m \in \mathbb{Z} \text { with } m>0 \\
& \qquad a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
\end{aligned}
$$

Check Your Understanding. What do each of these mean? When are they true?
$x \equiv 0(\bmod 2)$
$-1 \equiv 19(\bmod 5)$
$y \equiv 2(\bmod 7)$

Modular Arithmetic

Definition: "a is congruent to b modulo m"

$$
\begin{aligned}
& \text { For } a, b, m \in \mathbb{Z} \text { with } m>0 \\
& \qquad \quad a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
\end{aligned}
$$

Check Your Understanding. What do each of these mean? When are they true?
$x \equiv 0(\bmod 2)$
This statement is the same as saying " x is even"; so, any x that is even (including negative even numbers) will work.
$-1 \equiv 19(\bmod 5)$
This statement is true. $19-(-1)=20$ which is divisible by 5
$y \equiv 2(\bmod 7)$
This statement is true for y in $\{\ldots,-12,-5,2,9,16, \ldots\}$. In other words, all y of the form $2+7 k$ for k an integer.

Modular Arithmetic: A Property

Let a, b, m be integers with $m>0$.
Then, $a \equiv b(\bmod m)$ if and only if $a \bmod m=b \bmod m$.
Suppose that $a \equiv b(\bmod m)$.

Suppose that $a \bmod m=b \bmod m$.

Modular Arithmetic: A Property

Let a, b, m be integers with $m>0$.
Then, $a \equiv b(\bmod m)$ if and only if $a \bmod m=b \bmod m$.
Suppose that $a \equiv b(\bmod m)$.
Then, $m \mid(a-b)$ by definition of congruence.
So, $a-b=k m$ for some integer k by definition of divides.
Therefore, $a=b+k m$.
Taking both sides modulo m we get:

$$
a \bmod m=(b+k m) \bmod m=b \bmod m .
$$

Suppose that $a \bmod m=b \bmod m$.
By the division theorem, $a=m q+(a \bmod m)$ and

$$
b=m s+(b \bmod m) \text { for some integers } q, s .
$$

Then, $a-b=(m q+(a \bmod m))-(m s+(b \bmod m))$

$$
\begin{aligned}
& =m(q-s)+(a \bmod m-b \bmod m) \\
& =m(q-s) \text { since } a \bmod m=b \bmod m
\end{aligned}
$$

Therefore, $m \mid(a-b)$ and so $a \equiv b(\bmod m)$.

