
CSE 311: Foundations of Computing

Lecture 12:  More set theory



Recap: Set Theory

• Sets are collections of objects called elements. 
• We write a ∈	B to say that a is an element of set B, 

and a ∉	B to say that it is not.

Examples: 
• 𝐴 = { 1,2}, 𝐵 = ∅, 𝐶 = { cat, 7, dog, { 1,2}} are sets



Recap: Set Theory

• Sets are collections of objects called elements. 
• We write a ∈	B to say that a is an element of set B, 

and a ∉	B to say that it is not.
• Sets 𝐴 and 𝐵 are equal if they have the same 

elements: 𝐴 = 𝐵 ≡ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)
• A set 𝐴 is a subset of a set B if every element of 𝐴 is 

also in 𝐵: 𝐴 ⊆ 𝐵 ≡ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)

Examples: 
• 𝐴 = { 1,2}, 𝐵 = ∅, 𝐶 = { cat, 7, dog, { 1,2}} are sets
• If 𝐷 = { 1,3} and 𝐸 = { 1,3,5}, then 𝐷 ≠ 𝐸 and 𝐷 ⊆ 𝐸



S = the set of all* x for which P(x) is true

S = the set of all x in A for which P(x) is true

Building Sets from Predicates**

S = {x : P(x)}

S = {x Î A : P(x)}

*in the domain of P, usually called the “universe” U
**also known as “set builder notation’’



Set Operations

𝐴 ∪ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 }

𝐴 ∩ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 }

𝐴 \ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵 }

Union

Intersection

Set Difference

A = {1, 2, 3}
B = {3, 5, 6} 
C = {3, 4}

QUESTIONS
Using A, B, C and set operations, make…
[6] =
{3} =
{1,2} =



More Set Operations

𝐴⊕ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ⊕ 𝑥 ∈ 𝐵 }

0𝐴 = 𝑥 ∶ 𝑥 ∉ 𝐴
(with respect to universe U)                   

Symmetric
Difference

Complement

A = {1, 2, 3}
B = {1, 2, 4, 6} 
Universe:
U = {1, 2, 3, 4, 5, 6}

A ⊕ B = {3, 4, 6}
!𝖠 = {4,5,6}

Alternative notation for complement: 𝐴!



It’s propositional logic again

• Definition for È based on Ú

• Definition for Ç based on Ù

• Complement works like ¬



De Morgan’s Laws



De Morgan’s Laws

Proof technique:
To show C = D show
x Î C ® x Î D and
x Î D ® x Î C

Prove that (𝐴 ∪ 𝐵)!= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by definition of
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter is 
equivalent to ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵), which is equivalent to 
¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵) by De Morgan’s law. We then 
have 𝑥 ∈ 𝐴! and 𝑥 ∈ 𝐵! , by the definition of 
complement, so we have 𝑥 ∈ 𝐴! ∩ 𝐵! by the definition 
of intersection.



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 ! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! .... Then, 𝑥 ∈ 𝐴! ∩ 𝐵! .
Suppose 𝑥 ∈ 𝐴! ∩ 𝐵! . Then, by definition of
intersection, we have 𝑥 ∈ 𝐴! and 𝑥 ∈ 𝐵! . That is, we 
have ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵), which is equivalent to 
¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) by De Morgan’s law. The last is 
equivalent to ¬(𝑥 ∈ 𝐴 ∪ 𝐵), by the definition of union, 
so we have shown 𝑥 ∈ 𝐴 ∪ 𝐵 ! , by the definition of 
complement.



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 ! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
The stated bi-condition holds since:
𝑥 ∈ 𝐴 ∪ 𝐵 ! ≡ ¬(𝑥 ∈ 𝐴 ∪ 𝐵) def of -𝐶

≡ ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) def of ∪
≡ ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵) De Morgan
≡ 𝑥 ∈ 𝐴! ∧ 𝑥 ∈ 𝐵! def of -𝐶

≡ 𝑥 ∈ 𝐴! ∩ 𝐵! def of ∩Chains of equivalences 
are often easier to read 
like this rather than as 

English text



Use of propositional logic

Meta Theorem: One can translate any = relationship 
between sets into a propositional logic ≡ by replacing ∩
,∪, . . ! to ∧,∨, ¬. 

’’Proof’’: Let 𝑥 be an arbitrary object. Then the 
stated bi-condition holds since
𝑥 ∈ left side ≡ replace set ops with propositional logic

≡ apply propositional logic equivalence
≡ replace propositional logic with set ops
≡ 𝑥 ∈ right side

Since 𝑥 was arbitrary we have shown the sets are equal.



Lecture 12 Activity

• You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share screen, showing this PDF 
• Prove the 2nd De Morgan Law: 

For all sets A and B, one has 𝐴 ∩ 𝐵 ! = 𝐴! ∪ 𝐵!.

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login 
with your UW identity

Prove that 𝐴 ∪ 𝐵 ! = 𝐴! ∩ 𝐵!
Proof: Let x be an arbitrary object.
The stated bi-condition holds since:
𝑥 ∈ 𝐴 ∪ 𝐵 ! ≡ ¬(𝑥 ∈ 𝐴 ∪ 𝐵) def of -𝐶

≡ ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) def of ∪
≡ ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵) De Morgan
≡ 𝑥 ∈ 𝐴! ∧ 𝑥 ∈ 𝐵! def of -𝐶
≡ 𝑥 ∈ 𝐴! ∩ 𝐵! def of ∩

Since 𝑥 was arbitrary we have shown the sets are 
equal.

http://pollev.com/thomas311


Distributive Laws

𝐴 ∩ 𝐵 ∪ 𝐶 = 𝐴 ∩ 𝐵 ∪ 𝐴 ∩ 𝐶
𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ 𝐴 ∪ 𝐶

C

A B

C

A B



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

𝒫(Days)=?

𝒫(Æ)=?

𝒫 𝐴 = { 𝐵 ∶ 𝐵 ⊆ 𝐴 }



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

𝒫(Days)= 𝖬,𝖶, 𝖥 , 𝖬,𝖶 , 𝖬, 𝖥 , 𝖶, 𝖥 , 𝖬 , 𝖶 , 𝖥 ,Æ

𝒫(Æ)={Æ} ≠ Æ

𝒫 𝐴 = { 𝐵 ∶ 𝐵 ⊆ 𝐴 }



Cartesian Product

𝐴×𝐵 = { 𝑎, 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }

ℝ×ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ × ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.



Cartesian Product

𝐴×𝐵 = { 𝑎, 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }

ℝ×ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ × ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

What is 𝑨×∅?



Cartesian Product

𝐴×𝐵 = { 𝑎, 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }

ℝ×ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ × ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

𝑨×∅ ={(𝒂, 𝒃) ∶ 𝒂 ∈ 𝑨 ∧ 𝒃 ∈ ∅} = {(𝒂, 𝒃) ∶ 𝒂 ∈ 𝑨 ∧ 𝗙} = ∅



Representing Sets Using Bits

• Suppose universe 𝑈 is {1,2, … , 𝑛}
• Can represent set 𝐵 ⊆ 𝑈 as a vector of bits: 

𝑏'𝑏(…𝑏) where 𝑏* = 1 when 𝑖 ∈ 𝐵
𝑏* = 0 when 𝑖 ∉ 𝐵

– Called the characteristic vector of set B

• Given characteristic vectors for 𝐴 and 𝐵
–What is characteristic vector for 𝐴 ∪ 𝐵?  𝐴 ∩ 𝐵?



Russell’s Paradox

𝑆 = { 𝑥 ∶ 𝑥 ∉ 𝑥 }
Suppose for contradiction that 𝑆 ∈ 𝑆…



Russell’s Paradox

𝑆 = { 𝑥 ∶ 𝑥 ∉ 𝑥 }
Suppose for contradiction that 𝑆 ∈ 𝑆.  Then, by definition of
𝑆, 𝑆 ∉ 𝑆, but that’s a contradiction.

Suppose for contradiction that 𝑆 ∉ 𝑆.  Then, by definition of
the set 𝑆, 𝑆 ∈ 𝑆, but that’s a contradiction, too.

This is reminiscent of the truth value of the statement “This 
statement is false.”



Number Theory (and applications to computing)

• Branch of Mathematics with direct relevance to 
computing

• Many significant applications
– Cryptography
– Hashing
– Security

• Important tool set



Modular Arithmetic

• Arithmetic over a finite domain

• In computing, almost all computations are over a 
finite domain



I’m ALIVE!

public class Test {
final static int SEC_IN_YEAR = 364*24*60*60*100;
public static void main(String args[]) {

System.out.println(
“I will be alive for at least ” +
SEC_IN_YEAR * 101 + “ seconds.”

);
}

}



I’m ALIVE!

public class Test {
final static int SEC_IN_YEAR = 364*24*60*60*100;
public static void main(String args[]) {

System.out.println(
“I will be alive for at least ” +
SEC_IN_YEAR * 101 + “ seconds.”

);
}

}

Prints : “I will be alive for at least -186619904 seconds.”



Divisibility

Check Your Understanding.  Which of the following are true?

5 |	1 25 | 5 5 | 0 3 |	2

1 | 5 5 | 25 0 | 5 2 | 3

For 𝑎 ∈ ℤ, 𝑏 ∈ ℤ with 𝑎 ≠ 0:
𝑎 | 𝑏 ↔ ∃𝑘 ∈ ℤ (𝑏 = 𝑘𝑎)

Definition: “a divides b”



Check Your Understanding.  Which of the following are true?

5 |	1 25 | 5 5 | 0 3 |	2

1 | 5 5 | 25 0 | 5 2 | 3

Divisibility

5 | 1 iff 1 = 5k

1 | 5 iff 5 = 1k

25 | 5 iff 5 = 25k

5 | 25 iff 25 = 5k

5 | 0 iff 0 = 5k

0 | 5 iff 5 = 0k

3 | 2 iff 2 = 3k

2 | 3 iff 3 = 2k

For 𝑎 ∈ ℤ, 𝑏 ∈ ℤ with 𝑎 ≠ 0:
𝑎 | 𝑏 ↔ ∃𝑘 ∈ ℤ (𝑏 = 𝑘𝑎)

Definition: “a divides b”



To put it another way, if we divide d into a, we get a 
unique quotient                                                                     
and non-negative remainder

Division Theorem

q = a div d

Note: r ≥ 0 even if a < 0.  
Not quite the same as  a%d.

For 𝑎 ∈ ℤ, 𝑑 ∈ ℤ with 𝑑 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑑
such that 𝑎 = 𝑑𝑞 + 𝑟.

Division Theorem

r = a mod d



To put it another way, if we divide d into a, we get a 
unique quotient                                                                     
and non-negative remainder

Division Theorem

q = a div d

Note: r ≥ 0 even if a < 0.  
Not quite the same as  a%d.

For 𝑎 ∈ ℤ, 𝑑 ∈ ℤ with 𝑑 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑑
such that 𝑎 = 𝑑𝑞 + 𝑟.

Division Theorem

r = a mod d

public class Test2 {
public static void main(String args[]) {

int a = -5;
int d = 2;
System.out.println(a % d);

}
}



Arithmetic, mod 7

a +7 b = (a + b) mod 7
a ´7 b = (a ´ b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

0
1

2

34

5

6



Modular Arithmetic

Check Your Understanding.  What do each of these mean?
When are they true?

x ≡ 0 (mod 2)

-1 ≡ 19 (mod 5)

y ≡ 2 (mod 7)

For 𝑎, 𝑏,𝑚 ∈ ℤ with 𝑚 > 0
𝑎 ≡ 𝑏 mod 𝑚 ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”



Modular Arithmetic

Check Your Understanding.  What do each of these mean?
When are they true?

x ≡ 0 (mod 2)

-1 ≡ 19 (mod 5)

y ≡ 2 (mod 7)

For 𝑎, 𝑏,𝑚 ∈ ℤ with 𝑚 > 0
𝑎 ≡ 𝑏 mod 𝑚 ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”

This statement is the same as saying “x is even”; so, any x that is 
even (including negative even numbers) will work.

This statement is true.  19 - (-1) = 20 which is divisible by 5

This statement is true for  y in { ..., -12, -5, 2, 9, 16, ...}.  In other 
words, all y of the form 2+7k for k an integer. 



Modular Arithmetic: A Property

Let 𝑎, 𝑏,𝑚 be integers with 𝑚 > 0.                              
Then, 𝑎 ≡ 𝑏 (mod 𝑚) if and only if 𝑎 mod 𝑚 = 𝑏 mod 𝑚.

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚).
Then, m | (a – b) by definition of congruence.
So, a – b = km for some integer k by definition of divides.
Therefore, a = b+km. 
Taking both sides modulo m we get:

a mod m=(b+km) mod m = b mod m.
Suppose that 𝑎 mod 𝑚 = 𝑏 mod 𝑚.

By the division theorem, a = mq + (a mod m) and
b = ms + (b mod m) for some integers q,s.

Then, a – b = (mq + (a mod m)) – (mr + (b mod m))
= m(q – r) + (a mod m – b mod m)
= m(q – r) since a mod m = b mod m

Therefore, m |(a-b)  and so  a ≡ b (mod m).



Modular Arithmetic: A Property

Let 𝑎, 𝑏,𝑚 be integers with 𝑚 > 0.                              
Then, 𝑎 ≡ 𝑏 (mod 𝑚) if and only if 𝑎 mod 𝑚 = 𝑏 mod 𝑚.

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚).
Then, 𝑚 | (𝑎 – 𝑏) by definition of congruence.
So, 𝑎 – 𝑏 = 𝑘𝑚 for some integer 𝑘 by definition of divides.
Therefore, 𝑎 = 𝑏 + 𝑘𝑚. 
Taking both sides modulo 𝑚 we get:

𝑎 mod 𝑚 = (𝑏 + 𝑘𝑚) mod 𝑚 = 𝑏 mod 𝑚. mod m = b 
Suppose that 𝑎 mod 𝑚 = 𝑏 mod 𝑚.

By the division theorem, 𝑎 = 𝑚𝑞 + (𝑎 mod 𝑚) and
𝑏 = 𝑚𝑠 + (𝑏 mod 𝑚) for some integers 𝑞,𝑠.

Then, 𝑎 – 𝑏 = (𝑚𝑞 + (𝑎 mod 𝑚)) – (𝑚𝑠 + (𝑏 mod 𝑚))
= 𝑚(𝑞 – 𝑠) + (𝑎 mod 𝑚 – 𝑏 mod 𝑚)
= 𝑚(𝑞 – 𝑠) since 𝑎 mod 𝑚 = 𝑏 mod 𝑚

Therefore, 𝑚 |(𝑎 − 𝑏) and so  𝑎 ≡ 𝑏 (mod 𝑚).


