CSE 311.: Foundations of Computing

Lecture 12: More set theory
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Recap: Set Theory

* Sets are collections of objects called elements.
 We write 2 € B to say that a is an element of set B,

and a & B to say that it is not.

Examples:
- A={12},B=0,C = {cat,7,dog,{ 1,2}} are sets



Recap: Set Theory

* Sets are collections of objects called elements.
 We write 2 € B to say that a is an element of set B,

and a & B to say that it is not.

 Sets A and B are equal if they have the same
elements:A =B =Vx(x €A o x€RB)

« Aset Ais asubset of a set B if every element of A is
alsoinB:ACB=Vx(x€A—->x€RB)

Examples:
- A={12},B=0,C = {cat,7,dog,{ 1,2}} are sets
e fD={13}and E ={1,3,5},thenD #Eand D C E



Building Sets from Predicates™

S = the set of all* x for which P(x) is true

S ={x:P(x)}

S = the set of all x in A for which P(x) is true

S={xeA:P(x)}

“in the domain of P, usually called the “universe” U

**also known as “set builder notation”



Set Operations

AUB={x:(x€A)V(x €B)} Union

ANB={x:(x €A)A(x €B)} Intersection

A\B={x:(x€A)AN(x &B)} SetDifference

A={1, 2, 3} QUESTIONS
B={3,5, 6} Using A, B, C and set operations, make...
C={3, 4} [6] =

3} =
{1,2} =




More Set Operations

A B = {x : (x = A) D (X = B)} Sy.mmetric
Difference

A={x:x¢A}

(with respect to universe U) Complement

Alternative notation for complement: A¢

A=11, 2, 3}

B= {11 2; 4; 6} B
Universe: A D B=1{3 4,6}

U=1{1,2,3,4,5,6 A= 14,560




It's propositional logic again

 Definition for U based on v

 Definition for N based on A

« Complement works like —



De Morgan’s Laws

AUB=ANB

ANB=AUB



De Morgan’s Laws

Prove that (A U B)¢= A® n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)C. Then, by definition of
complement, we have —(x € A U B). The latter is
equivalentto =(x € AV x € B), which is equivalent to
—(x € A) A =(x € B) by De Morgan’s law. We then
have x € A® and x € B, by the definition of
complement, so we have x € A® N B¢ by the definition

of intersection. Proof technique:
To show C = D show
xe C—>xeDand
xeD—->xeC



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.
Suppose x € (AU B)¢.... Then, x € A* n B¢.

Suppose x € A® N B¢. Then, by definition of
intersection, we have x € A® and x € B¢. That is, we
have —(x € A) A =(x € B), which is equivalent to
—(x € AV x € B) by De Morgan’s law. The last is
equivalent to —=(x € A U B), by the definition of union,
so we have shown x € (4 U B)¢, by the definition of
complement. B



De Morgan’s Laws

Prove that (A U B)¢ = A° n B¢
Formally, prove Vx (x € (AU B)¢ & x € A° N BY)

Proof: Let x be an arbitrary object.
The stated bi-condition holds since:

x€(AUB) =-—=(x€AUB) def of -¢
=-(x€AVx€EBRB) def of U
=-(x€A)A-(x € B) De Morgan
=x€A*Ax € B¢ def of -€

Chains of equivalences = x € AC N BC def of N

are often easier to read

like this rather than as
English text




Use of propositional logic

Meta Theorem: One can translate any = relationship
between sets into a propositional logic = by replacing N
U, ()¢ to AV, —.

”"Proof’’: Let x be an arbitrary object. Then the

stated bi-condition holds since

x € left side replace set ops with propositional logic
apply propositional logic equivalence
replace propositional logic with set ops
X € right side

Since x was arbitrary we have shown the sets are equal.



Lecture 12 Activity

* You will be assignhed to breakout rooms. Please:
* Introduce yourself
* Choose someone to share screen, showing this PDF
* Prove the 2" De Morgan Law:
For all sets A and B, one has (AN B)¢ = A® u BC.

Prove that (A U B)¢ = A® n B¢
Proof: Let x be an arbitrary object.
The stated bi-condition holds since:

Fill out a poll everywhere for Activity Credit! | *€@UB® = ﬂg Syl 5) e S:Lj
Go to pollev.com/thomas311 and login = (x€A)A=(x €B)  De Morgan
. . . =x€eA“Ax €B¢ def of -¢

with your UW identity = v e AC 0 BC def of N

Since x was arbitrary we have shown the sets are
equal.



http://pollev.com/thomas311

Distributive Laws

AN(BUC)=ANB)UANC)
AUBNC)=(AUB)N (A uUC)

vl



Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:B<S A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)=?

P(D)=?



Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:B<S A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)={{M, W, F}, {M, W}, {M, F}, {w, F}, {M}, {W3}, {F}, &}

P(QD)={D} # &



Cartesian Product

AXB ={(a,b):a€ A,b €EB}

R X R is the real plane. You’ve seen ordered pairs before.
These are just for arbitrary sets.
Z. X 7. is “the set of all pairs of integers”

If A={1, 2}, B={a, b, c}, then A X B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.



Cartesian Product

AXB ={(a,b):a€ A,b €EB}

R X R is the real plane. You’ve seen ordered pairs before.
These are just for arbitrary sets.
Z. X 7. is “the set of all pairs of integers”

If A={1, 2}, B={a, b, c}, then A X B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

What is AX??



Cartesian Product

AXB ={(a,b):a € A,b€EB}

R X R is the real plane. You’ve seen ordered pairs before.
These are just for arbitrary sets.
Z. X 7. is “the set of all pairs of integers”

If A={1, 2}, B={a, b, c}, then A X B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

AXO={(a,b):a€ANDbeP}={(ab):acA ANF} =0



Representing Sets Using Bits

* Suppose universe U is {1,2, ..., n}
 Can represent set B € U as a vector of bits:
bib, ...b, where b; =1wheni€RB
b =0wheni & B
— Called the characteristic vector of set B

 Given characteristic vectors for A and B
— What is characteristic vector for AU B? AN B?



Russell’s Paradox

S={x:x¢&x}

Suppose for contradiction that S € S...



Russell’s Paradox

S={x:x€&x}

Suppose for contradiction that S € S. Then, by definition of
S,S &5, but that’s a contradiction.

Suppose for contradiction that S € S. Then, by definition of
the set S, S € S5, but that’s a contradiction, too.

This is reminiscent of the truth value of the statement “This
statement is false.”



Number Theory (and applications to computing)

e Branch of Mathematics with direct relevance to
computing

* Many significant applications
— Cryptography
— Hashing
— Security

* Important tool set



Modular Arithmetic

 Arithmetic over a finite domain

* In computing, almost all computations are over a
finite domain



I’m ALIVE!

public class Test {
final static int SEC_IN YEAR = 364*24*60*60%*100;
public static void main(String args[]) {
System.out.println(
“I will be alive for at least ” +
SEC_IN YEAR * 101 + “ seconds.”

)5



I’m ALIVE!

public class Test {
final static int SEC_IN YEAR = 364*24*60*60%*100;
public static void main(String args[]) {
System.out.println(
“I will be alive for at least ” +
SEC_IN YEAR * 101 + “ seconds.”

)5

----JGRASP exec: java Test
I will be alive for at least -186619904 seconds.

----JjGRASP: operation complete.



Divisibility

Definition: “a divides b”

Fora € Z,b € Z with a # 0:

a|lbe 3k eZ (b=ka)
- J

Check Your Understanding. Which of the following are true?

5|1 25 | 5 5|0 3|2

1|5 5|25 0|5 2|3



Divisibility

Definition: “a divides b”

Fora € Z,b € Z with a # 0:

a|lbe 3k eZ (b=ka)
- J

Check Your Understanding. Which of the following are true?

5|1 25| 5 3|2

5] 1iff1 =05k 25 | 5iff 5 =25k 5|1]0iff0=5k 3]|2iff2=3k

@ @ 0|5 2|3

1|5iff5=1k 5| 25iff 25 = 5k O]5iff5=0k 2] 3iff3=2k




Division Theorem

Division Theorem

Fora € Z,d € Z withd > 0
there exist unique integers g, rwith 0 <r <d
9 such thata = dg + . P

To put it another way, if we divide d into a, we get a
unique quotient g = adiv d
and non-negative remainder | r=a mod d

Note: r=0 evenifa <O0.
Not quite the same as a%d.




Division Theorem

Division Theorem

Fora € Z,d € Z withd > 0
there exist unique integers g, rwith 0 <r <d
9 such thata = dg + . P

To put it another way, if we divide d into a, we get a
unique quotient g = adiv d
and non-negative remainder | r=a mod d

pUbllc class Test2 { ----JGRASP exec: java Test2

public static void main(String args[]) { -1
:!-nt a = -5; ----jGRASP: operation complete.
int d = 2; '
System.out.println(a % d);

} Note: r=0 evenifa < 0.

Not quite the same as a%d.




Arithmetic, mod 7

at+t-b=(@+b)mod7
ax;b=(@xb)mod?7




Modular Arithmetic

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0
a=b(modm) & m|(a —b)

\_

Check Your Understanding. What do each of these mean?
When are they true?

X =0 (mod 2)

-1 =19 (mod 5)

y =2 (mod 7)



Modular Arithmetic

"\

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0
a=b(modm) & m|(a —b)

-

Check Your Understanding. What do each of these mean?
When are they true?
X =0 (mod 2)

This statement is the same as saying “x is even”; so, any X that is
even (including negative even numbers) will work.

-1 =19 (mod 5)
This statement is true. 19 - (-1) = 20 which is divisible by 5
y =2 (mod7)

This statement is true for yin{...,-12,-5, 2, 9, 16, ...}. In other
words, all y of the form 2+7k for k an integer.



Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

Suppose that a = b (mod m).

Suppose that a mod m = b mod m.



Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

Suppose that a = b (mod m).
Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.
Taking both sides modulo m we get:
a mod m = (b + km) mod m = b mod m.

Suppose that a mod m = b mod m.
By the division theorem, a = mqg + (a mod m) and
b = ms + (b mod m) for some integers g,s.
Then,a -b = (mq + (a mod m)) - (ms + (b mod m))
= m(q-s) + (amodm- b modm)
= m(q-s)sinceamodm = bmodm
Therefore, m |(a — b) andso a = b (mod m).



