CSE 311: Foundations of Computing

Lecture 12: More set theory

Recap: Set Theory

- Sets are collections of objects called elements.
- We write a ∈ B to say that a is an element of set B,
 and a ∉ B to say that it is not.

Examples:

• $A = \{ 1,2 \}, B = \emptyset, C = \{ cat, 7, dog, \{ 1,2 \} \}$ are sets

Recap: Set Theory

- Sets are collections of objects called elements.
- We write a ∈ B to say that a is an element of set B, and a ∉ B to say that it is not.
- Sets *A* and *B* are equal if they have the same elements: $A = B \equiv \forall x (x \in A \leftrightarrow x \in B)$
- A set *A* is a subset of a set *B* if every element of *A* is also in $B: A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$

Examples:

- $A = \{ 1,2 \}, B = \emptyset, C = \{ cat, 7, dog, \{ 1,2 \} \}$ are sets
- If $D = \{ 1,3 \}$ and $E = \{ 1,3,5 \}$, then $D \neq E$ and $D \subseteq E$

$S = the set of all^* x for which P(x) is true$

 $S = \{x : P(x)\}$

S = the set of all x in A for which P(x) is true

$$\mathsf{S} = \{\mathsf{x} \in \mathsf{A} : \mathsf{P}(\mathsf{x})\}$$

*in the domain of P, usually called the "universe" U
**also known as "set builder notation"

A =

C =

$$A \cup B = \{ x : (x \in A) \lor (x \in B) \}$$
 Union

$$A \cap B = \{ x : (x \in A) \land (x \in B) \}$$
 Intersection

$$A \setminus B = \{ x : (x \in A) \land (x \notin B) \}$$

A =
$$\{1, 2, 3\}$$

B = $\{3, 5, 6\}$
C = $\{3, 4\}$
Using A, B, C and set operations, make...
[6] =
 $\{3\} =$
 $\{1, 2\} =$

$$A \bigoplus B = \{ x : (x \in A) \bigoplus (x \in B) \}$$

Symmetric Difference

$$\overline{A} = \{ x : x \notin A \}$$
(with respect to universe U)

Complement

Alternative notation for complement: *A*^{*C*}

A =
$$\{1, 2, 3\}$$

B = $\{1, 2, 4, 6\}$
Universe:
U = $\{1, 2, 3, 4, 5, 6\}$

It's propositional logic again

- Definition for \cup based on \vee

• Definition for \cap based on \land

- Complement works like \neg

$\overline{A \cup B} = \overline{A} \cap \overline{B}$

$\overline{A\cap B}=\bar{A}\cup\bar{B}$

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^{C}$. Then, by definition of complement, we have $\neg (x \in A \cup B)$. The latter is equivalent to $\neg (x \in A \lor x \in B)$, which is equivalent to $\neg (x \in A) \land \neg (x \in B)$ by De Morgan's law. We then have $x \in A^{C}$ and $x \in B^{C}$, by the definition of complement, so we have $x \in A^{C} \cap B^{C}$ by the definition of intersection.

To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$ Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$ Then, $x \in A^C \cap B^C$. Suppose $x \in A^C \cap B^C$. Then, by definition of intersection, we have $x \in A^C$ and $x \in B^C$. That is, we have $\neg (x \in A) \land \neg (x \in B)$, which is equivalent to $\neg(x \in A \lor x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in (A \cup B)^C$, by the definition of complement. I

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

The stated bi-condition holds since:

 $x \in (A \cup B)^{C} \equiv \neg (x \in A \cup B) \qquad \text{def of } -^{C}$ $\equiv \neg (x \in A \lor x \in B) \qquad \text{def of } \cup$ $\equiv \neg (x \in A) \land \neg (x \in B) \qquad \text{De Morgan}$ $\equiv x \in A^{C} \land x \in B^{C} \qquad \text{def of } -^{C}$ $\equiv x \in A^{C} \cap B^{C} \qquad \text{def of } \cap$

Meta Theorem: One can translate any = relationship between sets into a propositional logic \equiv by replacing \cap , \cup , $(..)^{C}$ to \wedge , \vee , \neg .

"Proof": Let *x* be an arbitrary object. Then the stated bi-condition holds since

 $x \in \text{left side}$ \equiv replace set ops with propositional logic \equiv apply propositional logic equivalence \equiv replace propositional logic with set ops $\equiv x \in \text{right side}$

Since *x* was arbitrary we have shown the sets are equal.

Lecture 12 Activity

- You will be assigned to breakout rooms. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF
- Prove the 2nd De Morgan Law:

For all sets A and B, one has $(A \cap B)^C = A^C \cup B^C$.

Fill out a poll everywhere for Activity Credit! Go to pollev.com/thomas311 and login with your UW identity Prove that $(A \cup B)^C = A^C \cap B^C$ Proof: Let x be an arbitrary object. The stated bi-condition holds since: $x \in (A \cup B)^C \equiv \neg (x \in A \cup B)$ def of $-^C$ $\equiv \neg (x \in A \lor x \in B)$ def of \cup $\equiv \neg (x \in A) \land \neg (x \in B)$ De Morgan $\equiv x \in A^C \land x \in B^C$ def of $-^C$ $\equiv x \in A^C \cap B^C$ def of \cap Since x was arbitrary we have shown the sets are equal.

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

• Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(\mathsf{Days})=?$

$\mathcal{P}(\emptyset)$ =?

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(Days) = \{\{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset\}\}$

 $\mathcal{P}(\varnothing) = \{\varnothing\} \neq \varnothing$

$$A \times B = \{ (a, b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

$$A \times B = \{ (a, b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

What is $A \times \emptyset$?

$$A \times B = \{ (a, b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

 $A \times \emptyset = \{(a, b) : a \in A \land b \in \emptyset\} = \{(a, b) : a \in A \land \mathsf{F}\} = \emptyset$

Representing Sets Using Bits

- Suppose universe U is $\{1, 2, ..., n\}$
- Can represent set $B \subseteq U$ as a vector of bits: $b_1 b_2 \dots b_n$ where $b_i = 1$ when $i \in B$ $b_i = 0$ when $i \notin B$
 - Called the *characteristic vector* of set B
- Given characteristic vectors for A and B
 What is characteristic vector for A ∪ B? A ∩ B?

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that $S \in S$...

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that $S \in S$. Then, by definition of $S, S \notin S$, but that's a contradiction.

Suppose for contradiction that $S \notin S$. Then, by definition of the set $S, S \in S$, but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
 - Cryptography
 - Hashing
 - Security
- Important tool set

- Arithmetic over a finite domain
- In computing, almost all computations are over a finite domain

I'm ALIVE!

I'm ALIVE!

```
public class Test {
   final static int SEC_IN_YEAR = 364*24*60*60*100;
   public static void main(String args[]) {
       System.out.println(
          "I will be alive for at least " +
          SEC IN YEAR * 101 + " seconds."
      );
         ----jGRASP exec: java Test
        I will be alive for at least -186619904 seconds.
          ----jGRASP: operation complete.
```

Divisibility

Definition: "a divides b"

For
$$a \in \mathbb{Z}, b \in \mathbb{Z}$$
 with $a \neq 0$:
 $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$

Check Your Understanding. Which of the following are true?

Divisibility

Definition: "a divides b"

For
$$a \in \mathbb{Z}, b \in \mathbb{Z}$$
 with $a \neq 0$:
 $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$

Check Your Understanding. Which of the following are true?

Division Theorem

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}$ with d > 0there exist *unique* integers q, r with $0 \le r < d$ such that a = dq + r.

To put it another way, if we divide *d* into *a*, we get a unique quotient $q = a \operatorname{div} d$ and non-negative remainder $r = a \operatorname{mod} d$

> Note: r ≥ 0 even if a < 0. Not quite the same as **a**%**d**.

Division Theorem

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}$ with d > 0there exist *unique* integers q, r with $0 \le r < d$ such that a = dq + r.

To put it another way, if we divide *d* into *a*, we get a unique quotient $q = a \operatorname{div} d$ and non-negative remainder $r = a \operatorname{mod} d$

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
} Note: r ≥ 0 even if a < 0.
Not quite the same as a%d.</pre>
```

Arithmetic, mod 7

$$a +_7 b = (a + b) \mod 7$$

 $a \times_7 b = (a \times b) \mod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

 $x \equiv 0 \pmod{2}$

 $-1 \equiv 19 \pmod{5}$

 $y \equiv 2 \pmod{7}$

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

 $x \equiv 0 \pmod{2}$

This statement is the same as saying "x is even"; so, any x that is even (including negative even numbers) will work.

 $-1 \equiv 19 \pmod{5}$

This statement is true. 19 - (-1) = 20 which is divisible by 5

 $y \equiv 2 \pmod{7}$

This statement is true for y in { ..., -12, -5, 2, 9, 16, ...}. In other words, all y of the form 2+7k for k an integer.

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv b \pmod{m}$.

Suppose that $a \mod m = b \mod m$.

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv b \pmod{m}$. Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km. Taking both sides modulo *m* we get: $a \mod m = (b + km) \mod m = b \mod m$. Suppose that $a \mod m = b \mod m$. By the division theorem, $a = mq + (a \mod m)$ and $b = ms + (b \mod m)$ for some integers q,s. Then, $a - b = (mq + (a \mod m)) - (ms + (b \mod m))$ $= m(q-s) + (a \mod m - b \mod m)$

= m(q - s) since $a \mod m = b \mod m$

Therefore, $m \mid (a - b)$ and so $a \equiv b \pmod{m}$.