
CSE 311: Foundations of Computing

Lecture 13:  Number theory & modular arithmetic



Modular Arithmetic

• Arithmetic over a finite domain

• In computing, almost all computations are over a 

finite domain



Number Theory (and applications to computing)

• Branch of Mathematics with direct relevance to 

computing

• Many significant applications

– Cryptography

– Hashing

– Security

• Important tool set



I’m ALIVE!

public class Test {
final static int SEC_IN_YEAR = 364*24*60*60*100;
public static void main(String args[]) {

System.out.println(
“I will be alive for at least ” +
SEC_IN_YEAR * 101 + “ seconds.”

);
}

}



I’m ALIVE!

public class Test {
final static int SEC_IN_YEAR = 364*24*60*60*100;
public static void main(String args[]) {

System.out.println(
“I will be alive for at least ” +
SEC_IN_YEAR * 101 + “ seconds.”

);
}

}

Prints : “I will be alive for at least -186619904 seconds.”



Divisibility

Check Your Understanding.  Which of the following are true?

5 | 1 25 | 5 5 | 0 3 | 2

1 | 5 5 | 25 0 | 5 2 | 3

For 𝑎 ∈ ℤ,𝑏 ∈ ℤwith 𝑎 ≠ 0:
𝑎 | 𝑏↔ ∃𝑘 ∈ ℤ (𝑏 = 𝑘𝑎)

Definition: “a divides b”



Check Your Understanding.  Which of the following are true?

5 | 1 25 | 5 5 | 0 3 | 2

1 | 5 5 | 25 0 | 5 2 | 3

Divisibility

iff ∃k. 1 = 5k

iff ∃k. 5 = 1k

iff ∃k. 5 = 25k

iff ∃k. 25 = 5k

∃k. 0 = 5k

iff ∃k. 5 = 0k

iff ∃k. 2 = 3k

iff ∃k. 3 = 2k

For 𝑎 ∈ ℤ,𝑏 ∈ ℤwith 𝑎 ≠ 0:
𝑎 | 𝑏↔ ∃𝑘 ∈ ℤ (𝑏 = 𝑘𝑎)

Definition: “a divides b”



To put it another way, if we divide d into a, we get a 

unique quotient                                                                     

and non-negative remainder

Division Theorem

q = a div d

Note: r ≥ 0 even if a < 0.  

Not quite the same as in Java

For 𝑎 ∈ ℤ, 𝑑 ∈ ℤ with 𝑑 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑑
such that 𝑎 = 𝑑𝑞 + 𝑟.

Division Theorem

r = a % d



To put it another way, if we divide d into a, we get a 

unique quotient                                                                     

and non-negative remainder

Division Theorem

q = a div d

Note: r ≥ 0 even if a < 0.  

Not quite the same as in Java

For 𝑎 ∈ ℤ, 𝑑 ∈ ℤ with 𝑑 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑑
such that 𝑎 = 𝑑𝑞 + 𝑟.

Division Theorem

r = a % d

public class Test2 {
public static void main(String args[]) {

int a = -5;
int d = 2;
System.out.println(a % d);

}
}



Modular Arithmetic

Check Your Understanding.  What do each of these mean?

When are they true?

x ≡ 0 (mod 2)

-1 ≡ 19 (mod 5)

y ≡ 2 (mod 7)

For 𝑎, 𝑏,𝑚 ∈ ℤ with 𝑚 > 0
𝑎 ≡ 𝑏 mod𝑚 ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”



Modular Arithmetic

Check Your Understanding.  What do each of these mean?

When are they true?

x ≡ 0 (mod 2)

-1 ≡ 19 (mod 5)

y ≡ 2 (mod 7)

For 𝑎, 𝑏,𝑚 ∈ ℤ with 𝑚 > 0
𝑎 ≡ 𝑏 mod𝑚 ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”

This statement is the same as saying “x is even”; so, any x that is 

even (including negative even numbers) will work.

This statement is true.  19 - (-1) = 20 which is divisible by 5

This statement is true for  y in { ..., -12, -5, 2, 9, 16, ...}.  In other 

words, all y of the form 2+7k for k an integer. 



The %𝑚 function vs the ≡ (mod𝑚) predicate

• % is a function (operator) with two 

arguments. The result is an integer

• ≡ … (mod m) is a predicate

– "a is equivalent, modulo m, to b"

– "a is equivalent to b (modulo m)"

– a ≡ b (mod m)



Arithmetic, mod 7

0

1

2

34

5

6



Modular Arithmetic: A Property

Let 𝑎, 𝑏,𝑚 be integers with 𝑚 > 0.                              

Then, 𝑎 ≡ 𝑏 (mod 𝑚) if and only if 𝑎 %𝑚 = 𝑏 %𝑚.

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚).
Then, 𝑚 | (𝑎 –𝑏) by definition of congruence.
So, 𝑎 – 𝑏 = 𝑘𝑚 for some integer 𝑘 by definition of divides.
Therefore, 𝑎 = 𝑏 + 𝑘𝑚. 
Taking both sides modulo 𝑚 we get:

𝑎 %𝑚 = 𝑏 + 𝑘𝑚 %𝑚 = 𝑏 %𝑚. mod m = b 

Suppose that 𝑎 %𝑚 = 𝑏 %𝑚.



Modular Arithmetic: A Property

Let 𝑎, 𝑏,𝑚 be integers with 𝑚 > 0.                              

Then, 𝑎 ≡ 𝑏 (mod 𝑚) if and only if 𝑎 %𝑚 = 𝑏 %𝑚.

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚).
Then, 𝑚 | (𝑎 –𝑏) by definition of congruence.
So, 𝑎 – 𝑏 = 𝑘𝑚 for some integer 𝑘 by definition of divides.
Therefore, 𝑎 = 𝑏 + 𝑘𝑚. 
Taking both sides modulo 𝑚 we get:

𝑎 %𝑚 = 𝑏 + 𝑘𝑚 %𝑚 = 𝑏 %𝑚. mod m = b 

Suppose that 𝑎 %𝑚 = 𝑏 %𝑚.
By the division theorem, 𝑎 = 𝑚𝑞 + (𝑎 %𝑚) and

𝑏 = 𝑚𝑠 + (𝑏 %𝑚) for some integers 𝑞,𝑠.
Then, 𝑎 –𝑏 = (𝑚𝑞 + (𝑎 % 𝑚)) – (𝑚𝑠 + (𝑏 % 𝑚))

= 𝑚(𝑞 – 𝑠) + (𝑎 %𝑚 – 𝑏 %𝑚)
= 𝑚(𝑞 – 𝑠) since 𝑎 % 𝑚 = 𝑏 %𝑚

Therefore, 𝑚 |(𝑎 − 𝑏) and so  𝑎 ≡ 𝑏 (mod 𝑚).



The %𝑚 function vs the ≡ (mod𝑚) predicate

• What we have just shown

– The %𝑚 function takes any 𝑎 ∈ ℤ and maps it 
to a remainder 𝑎 %𝑚 ∈ {0,1, . . , 𝑚 − 1}.

– Imagine grouping together all integers that have 
the same value of the %𝑚 function

That is, the same remainder in 0,1, . . , 𝑚 − 1 .

– The ≡ (mod 𝑚) predicate compares 𝑎, 𝑏 ∈ ℤ. It 
is true if and only if the %𝑚 function has the 
same value on 𝑎 and on 𝑏. 

That is, 𝑎 and 𝑏 are in the same group.



Modular Arithmetic: Basic Property

Let 𝒎 be a positive integer.

If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) and 𝒃 ≡ 𝒄 (𝐦𝐨𝐝𝒎),
then 𝒂 ≡ 𝒄 (𝐦𝐨𝐝 𝒎)



Modular Arithmetic: Basic Property

Let 𝒎 be a positive integer.

If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) and 𝒃 ≡ 𝒄 (𝐦𝐨𝐝𝒎),
then 𝒂 ≡ 𝒄 (𝐦𝐨𝐝 𝒎)

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑏 ≡ 𝑐 (mod 𝑚). 
Then, by the previous property, we have 
𝑎 %𝑚 = 𝑏 %𝑚 and 𝑏 % 𝑚 = 𝑐 %𝑚. 

Putting these together, we have 𝑎 %𝑚 = 𝑐 %𝑚, 
which says that 𝑎 ≡ 𝑐 (mod 𝑚), by definition.

So “≡” behaves like “=“ in that sense.

And that is not the only similarity...



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) and     

𝒄 ≡ 𝒅 (𝐦𝐨𝐝𝒎), then 𝒂 + 𝒄 ≡ 𝒃 + 𝒅 (𝐦𝐨𝐝 𝒎)



Modular Arithmetic: Addition Property

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑐 ≡ 𝑑 (mod 𝑚).  Unrolling 
definitions gives us some 𝑘 such that 𝑎 – 𝑏 = 𝑘𝑚,                            
and some 𝑗 such that 𝑐 – 𝑑 = 𝑗𝑚.

Adding the equations together gives us 
(𝑎 + 𝑐) – (𝑏 + 𝑑) = 𝑚(𝑘 + 𝑗).  Now, re-applying the definition 
of congruence gives us 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (mod 𝑚).

Let 𝒎 be a positive integer.  If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) and     

𝒄 ≡ 𝒅 (𝐦𝐨𝐝𝒎), then 𝒂 + 𝒄 ≡ 𝒃 + 𝒅 (𝐦𝐨𝐝 𝒎)



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) and     

𝒄 ≡ 𝒅 (𝐦𝐨𝐝𝒎), then 𝒂𝒄 ≡ 𝒃𝒅 (𝐦𝐨𝐝𝒎)



Modular Arithmetic: Multiplication Property

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑐 ≡ 𝑑 (mod 𝑚).  Unrolling 
definitions gives us some 𝑘 such that 𝑎 – 𝑏 = 𝑘𝑚,                         
and some 𝑗 such that 𝑐 – 𝑑 = 𝑗𝑚.

Then, 𝑎 = 𝑘𝑚 + 𝑏 and 𝑐 = 𝑗𝑚 + 𝑑.  Multiplying both together 
gives us  𝑎𝑐 = (𝑘𝑚 + 𝑏)(𝑗𝑚 + 𝑑) = 𝑘𝑗𝑚2+ 𝑘𝑚𝑑 + 𝑏𝑗𝑚 + 𝑏𝑑.

Re-arranging gives us 𝑎𝑐 – 𝑏𝑑 = 𝑚(𝑘𝑗𝑚+ 𝑘𝑑 + 𝑏𝑗).                           
Using the definition of congruence gives us 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑚).

Let 𝒎 be a positive integer.  If 𝒂 ≡ 𝒃 (𝐦𝐨𝐝𝒎) and     

𝒄 ≡ 𝒅 (𝐦𝐨𝐝𝒎), then 𝒂𝒄 ≡ 𝒃𝒅 (𝐦𝐨𝐝𝒎)



Lecture 13 Activity

Fill out the poll everywhere for Activity Credit!

Go to pollev.com/philipmg and login with your UW 

identity

You will be assigned to breakout rooms. Please:

• Introduce yourself

• Choose someone to share their screen, showing this PDF

• Consider the statement:

For all 𝑎, 𝑏, 𝑐,𝑚 ∈ ℤ,𝑚 > 0 one has

𝑎 ≡ 𝑏 mod 𝑚 → 𝑎 + 𝑐 ≡ 𝑏 + 𝑐 (mod 𝑚).

• Discuss what the statement means. 

• Prove the statement. 

For 𝑎, 𝑏,𝑚 ∈ ℤ with 𝑚 > 0

𝑎 ≡ 𝑏 mod 𝑚 ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”

For 𝑎 ∈ ℤ,𝑏 ∈ ℤ with 𝑎 ≠ 0:
𝑎 | 𝑏↔ ∃𝑘 ∈ ℤ (𝑏 = 𝑘𝑎)

Definition: “a divides b”

http://pollev.com/philipmg


Lecture 13 Activity

You will be assigned to breakout rooms. Please:

• Introduce yourself

• Choose someone to share their screen, showing this PDF

• Consider the statement:

For all 𝑎, 𝑏, 𝑐,𝑚 ∈ ℤ,𝑚 > 0 one has

𝑎 ≡ 𝑏 mod 𝑚 → 𝑎 + 𝑐 ≡ 𝑏 + 𝑐 (mod 𝑚).

For 𝑎, 𝑏,𝑚 ∈ ℤ with 𝑚 > 0

𝑎 ≡ 𝑏 mod 𝑚 ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”

For 𝑎 ∈ ℤ,𝑏 ∈ ℤ with 𝑎 ≠ 0:
𝑎 | 𝑏↔ ∃𝑘 ∈ ℤ (𝑏 = 𝑘𝑎)

Definition: “a divides b”

Proof. 

Let 𝑎, 𝑏, 𝑐 ∈ ℤ be arbitrary and let 𝑚 > 0. 

Assume that 𝑎 ≡ 𝑏 (mod 𝑚). 
Then 𝑚 ∣ 𝑎 − 𝑏 and hence there is an 

integer 𝑥 with 𝑚𝑥 = 𝑎 − 𝑏. 

Then 𝑎 + 𝑐 − 𝑏 + 𝑐 = 𝑎 − 𝑏 = 𝑚𝑥
and so 𝑚 ∣ 𝑎 + 𝑐 − (𝑏 + 𝑐). 
Then 𝑎 + 𝑐 ≡ 𝑏 + 𝑐 (mod 𝑚) by 

definition of mod.



Example

Let 𝒏 be an integer.

Prove that 𝒏𝟐 ≡ 𝟎 (𝐦𝐨𝐝 𝟒) or 𝒏𝟐 ≡ 𝟏 (𝐦𝐨𝐝 𝟒)
Let’s start by looking a a small example:

02 = 0   ≡ 0 (mod 4)
12 = 1   ≡ 1 (mod 4)
22 = 4   ≡ 0 (mod 4)
32 = 9   ≡ 1 (mod 4)
42 = 16 ≡ 0 (mod 4)



Example

Let’s start by looking a a small example:
02 = 0   ≡ 0 (mod 4)
12 = 1   ≡ 1 (mod 4)
22 = 4   ≡ 0 (mod 4)
32 = 9   ≡ 1 (mod 4)
42 = 16 ≡ 0 (mod 4)

It looks like 

n ≡ 0 (mod 2) → n2 ≡ 0 (mod 4), and              

n ≡ 1 (mod 2) → n2 ≡ 1 (mod 4).

Case 1 (n is even):

Let 𝒏 be an integer.

Prove that 𝒏𝟐 ≡ 𝟎 (𝐦𝐨𝐝 𝟒) or 𝒏𝟐 ≡ 𝟏 (𝐦𝐨𝐝 𝟒)



Example

Let’s start by looking a a small example:
02 = 0   ≡ 0 (mod 4)
12 = 1   ≡ 1 (mod 4)
22 = 4   ≡ 0 (mod 4)
32 = 9   ≡ 1 (mod 4)
42 = 16 ≡ 0 (mod 4)

It looks like 

n ≡ 0 (mod 2) → n2 ≡ 0 (mod 4), and              

n ≡ 1 (mod 2) → n2 ≡ 1 (mod 4).

Case 1 (𝑛 is even):
Suppose 𝑛 is even.  
Then, 𝑛 = 2𝑘 for some integer 𝑘.
So, 𝑛2 = (2𝑘)2 = 4𝑘2. 
So, by  definition of congruence, 
we have 𝑛2 ≡ 0 (mod 4).

Let 𝒏 be an integer.

Prove that 𝒏𝟐 ≡ 𝟎 (𝐦𝐨𝐝 𝟒) or 𝒏𝟐 ≡ 𝟏 (𝐦𝐨𝐝 𝟒)



Example

Let’s start by looking a a small example:
02 = 0   ≡ 0 (mod 4)
12 = 1   ≡ 1 (mod 4)
22 = 4   ≡ 0 (mod 4)
32 = 9   ≡ 1 (mod 4)
42 = 16 ≡ 0 (mod 4)

It looks like 

n ≡ 0 (mod 2) → n2 ≡ 0 (mod 4), and              

n ≡ 1 (mod 2) → n2 ≡ 1 (mod 4).

Case 1 (n is even): Done.

Case 2 (n is odd):

Let 𝒏 be an integer.

Prove that 𝒏𝟐 ≡ 𝟎 (𝐦𝐨𝐝 𝟒) or 𝒏𝟐 ≡ 𝟏 (𝐦𝐨𝐝 𝟒)



Example

Let’s start by looking a a small example:
02 = 0   ≡ 0 (mod 4)
12 = 1   ≡ 1 (mod 4)
22 = 4   ≡ 0 (mod 4)
32 = 9   ≡ 1 (mod 4)
42 = 16 ≡ 0 (mod 4)

It looks like 

n ≡ 0 (mod 2) → n2 ≡ 0 (mod 4), and              

n ≡ 1 (mod 2) → n2 ≡ 1 (mod 4).

Case 1 (𝑛 is even): Done.

Case 2 (𝑛 is odd):
Suppose 𝑛 is odd.
Then, 𝑛 = 2𝑘 + 1 for some integer 𝑘.
So, 𝑛2 = 2𝑘 + 1 2

= 4𝑘2 + 4𝑘 + 1
= 4(𝑘2 + 𝑘) + 1. 

So, by the earlier property of mod,
we have 𝑛2 ≡ 1 (mod 4).

Let 𝒏 be an integer.

Prove that 𝒏𝟐 ≡ 𝟎 (𝐦𝐨𝐝 𝟒) or 𝒏𝟐 ≡ 𝟏 (𝐦𝐨𝐝 𝟒)

Result follows by “proof by cases”: n is either even or not even (odd)



• Represent integer 𝑥 as sum of powers of 2:

If  σ𝑖=0
𝑛−1 𝑏𝑖2

𝑖 where each 𝑏𝑖 ∈ {0,1}

then representation is bn-1...b2 b1 b0

99 = 64 + 32 + 2 + 1
18 = 16 + 2

• For n = 8:
99:    0110 0011
18:    0001  0010

n-bit Unsigned Integer Representation



Sign-Magnitude Integer Representation

𝑛-bit signed integers

Suppose that −2𝑛−1 < 𝑥 < 2𝑛−1

First bit as the sign, 𝑛 − 1 bits for the value

99 = 64 + 32 + 2 + 1

18 = 16 + 2

For n = 8:

99:    0110 0011

-18:   1001  0010

Any problems with this representation?



Two’s Complement Representation

𝑛 bit signed integers, first bit will still be the sign bit

Suppose that 0 ≤ 𝑥 < 2𝑛−1 ,

𝑥 is represented by the binary representation of 𝑥
Suppose that 0 ≤ 𝑥 ≤ 2𝑛−1 , 

−𝑥 is represented by the binary representation of 2𝑛 − 𝑥

99 = 64 + 32 + 2 + 1

18 = 16 + 2

For n = 8:

99:    0110 0011

-18:    1110 1110

Key property: Twos complement representation of any number 𝒚
is equivalent to 𝒚,𝐦𝐨𝐝 𝟐𝒏 so arithmetic works 𝐦𝐨𝐝 𝟐𝒏



Sign-Magnitude vs. Two’s Complement

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1111 1110 1101 1100 1011 1010 1001 0000 0001 0010 0011 0100 0101 0110 0111

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

Sign-bit

Two’s complement



Two’s Complement Representation

• For                         ,  −𝑥 is represented by the 
binary representation of 2𝑛 − 𝑥

– That is, the two’s complement representation of 
any number 𝑦 has the same value as 𝑦 modulo 2𝑛.

• To compute this:  Flip the bits of 𝑥 then add 1:

– All 1’s string is  2𝑛 − 1, so

Flip the bits of 𝑥  replace 𝑥 by 2𝑛 − 1 − 𝑥

Then add 1 to get 2𝑛 − 𝑥



Basic Applications of mod

• Hashing 

• Pseudo random number generation

• Simple cipher



Hashing

Scenario:  

Map a small number of data values from a large 

domain 0, 1, … ,𝑀 − 1 ...

...into a small set of locations 0,1, … , 𝑛 − 1 so 

one can quickly check if some value is present

• hash 𝑥 = 𝑥 % 𝑝 for 𝑝 a prime close to 𝑛

– or hash 𝑥 = 𝑎𝑥 + 𝑏 % 𝑝

• Depends on all of the bits of the data 

– helps avoid collisions due to similar values

– need to manage them if they occur



Pseudo-Random Number Generation

Linear Congruential method

𝑥𝑛+1 = 𝑎𝑥𝑛 + 𝑐 %𝑚

Choose random 𝑥0 , 𝑎, 𝑐, 𝑚 and produce

a long sequence of 𝑥𝑛’s



Simple Ciphers

• Caesar cipher,  A = 1, B = 2, . . .

– HELLO WORLD

• Shift cipher

– f(p) = (p + k) % 26

– f-1(p) = (p – k) % 26

• More general

– f(p) = (ap + b) % 26


