CSE 311: Foundations of Computing

Lecture 13: Number theory & modular arithmetic

- Arithmetic over a finite domain
- In computing, almost all computations are over a finite domain

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
 - Cryptography
 - Hashing
 - Security
- Important tool set

I'm ALIVE!

I'm ALIVE!

```
public class Test {
   final static int SEC IN YEAR = 364*24*60*60*100;
   public static void main(String args[]) {
       System.out.println(
          "I will be alive for at least " +
          SEC IN YEAR * 101 + " seconds."
      );
         ----jGRASP exec: java Test
        I will be alive for at least -186619904 seconds.
          ----jGRASP: operation complete.
```

Divisibility

Definition: "a divides b"

For
$$a \in \mathbb{Z}, b \in \mathbb{Z}$$
 with $a \neq 0$:
 $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$

Check Your Understanding. Which of the following are true?

Divisibility

Definition: "a divides b"

For
$$a \in \mathbb{Z}, b \in \mathbb{Z}$$
 with $a \neq 0$:
 $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$

Check Your Understanding. Which of the following are true?

Division Theorem

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}$ with d > 0there exist *unique* integers q, r with $0 \le r < d$ such that a = dq + r.

To put it another way, if we divide *d* into *a*, we get a unique quotient $q = a \operatorname{div} d$ and non-negative remainder r = a % d

> Note: $r \ge 0$ even if a < 0. Not quite the same as in Java

Division Theorem

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}$ with d > 0there exist *unique* integers q, r with $0 \le r < d$ such that a = dq + r.

To put it another way, if we divide *d* into *a*, we get a unique quotient $q = a \operatorname{div} d$ and non-negative remainder r = a % d

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
} Note: r ≥ 0 even if a < 0.
Not quite the same as in Java</pre>
```

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

 $-1 \equiv 19 \pmod{5}$

 $y \equiv 2 \pmod{7}$

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

 $x \equiv 0 \pmod{2}$

This statement is the same as saying "x is even"; so, any x that is even (including negative even numbers) will work.

 $-1 \equiv 19 \pmod{5}$ $5 - 1 - 19 \equiv 5 - 20 \equiv 3k$. -20 = 5k

This statement is true. 19 - (-1) = 20 which is divisible by 5

$$y \equiv 2 \pmod{7}$$
 $7/y-2 = 3k$. $4-7=7k = 3k$. $y=2-7k$

This statement is true for y in $\{ ..., -12, -5, 2, 9, 16, ... \}$. In other words, all y of the form 2+7k for k an integer.

The % m function vs the $\equiv \pmod{m}$ predicate

- % is a function (operator) with two arguments. The result is an integer
- ≡ ... (mod m) is a predicate
 - "a is equivalent, modulo m, to b"
 - "a is equivalent to b (modulo m)"
 - $-a \equiv b \pmod{m}$

Arithmetic, mod 7

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if a % m = b % m.

Suppose that $a \equiv b \pmod{m}$.

Suppose that a % m = b % m.

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if a % m = b % m.

Suppose that $a \equiv b \pmod{m}$. Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km. Taking both sides modulo m we get: a % m = (b + km)% m = b % m.

Suppose that a % m = b % m.

By the division theorem, a = mq + (a % m) and

b = ms + (b % m) for some integers q,s.

Then, a - b = (mq + (a % m)) - (ms + (b % m))= m(q - s) + (a % m - b % m)= m(q - s) since a % m = b % mTherefore, $m \mid (a - b)$ and so $a \equiv b \pmod{m}$. The % m function vs the $\equiv \pmod{m}$ predicate

- What we have just shown
 - The % *m* function takes any $a \in \mathbb{Z}$ and maps it to a remainder $a \% m \in \{0, 1, ..., m 1\}$.
 - Imagine grouping together all integers that have the same value of the % m function That is, the same remainder in $\{0, 1, ..., m - 1\}$.
 - The $\equiv \pmod{m}$ predicate compares $a, b \in \mathbb{Z}$. It is true if and only if the % *m* function has the same value on *a* and on *b*.

That is, *a* and *b* are in the same group.

Modular Arithmetic: Basic Property

```
Let m be a positive integer.
If a \equiv b \pmod{m} and b \equiv c \pmod{m},
then a \equiv c \pmod{m}
```

```
Let m be a positive integer.
If a \equiv b \pmod{m} and b \equiv c \pmod{m},
then a \equiv c \pmod{m}
```

Suppose that $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$. Then, by the previous property, we have a % m = b % m and b % m = c % m.

Putting these together, we have a % m = c % m, which says that $a \equiv c \pmod{m}$, by definition.

So " \equiv " behaves like "=" in that sense. And that is not the only similarity...

Modular Arithmetic: Addition Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Modular Arithmetic: Addition Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Adding the equations together gives us (a + c) - (b + d) = m(k + j). Now, re-applying the definition of congruence gives us $a + c \equiv b + d \pmod{m}$.

Modular Arithmetic: Multiplication Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

Modular Arithmetic: Multiplication Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Then, a = km + b and c = jm + d. Multiplying both together gives us $\underline{ac} = (km + b)(jm + d) = \underline{kjm^2 + kmd + bjm} + \underline{bd}$.

Re-arranging gives us ac - bd = m(kjm + kd + bj). Using the definition of congruence gives us $ac \equiv bd \pmod{m}$.

Lecture 13 Activity

You will be assigned to breakout rooms. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Consider the statement:

For all $a, b, c, m \in \mathbb{Z}, m > 0$ one has $a \equiv b \pmod{m} \rightarrow a + c \equiv b + c \pmod{m}$.

- Discuss what the statement means.
- Prove the statement.

D	efinition: "a is congruent to b modulo m"									
	For $a, b, m \in \mathbb{Z}$ with $m > 0$ $a \equiv h \pmod{m} \Leftrightarrow m \mid (a - b)$									
	Definition: "a divides b"									

For $a \in \mathbb{Z}$, $b \in \mathbb{Z}$ with $a \neq 0$:

 $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$

Fill out the poll everywhere for Activity Credit! Go to <u>pollev.com/philipmg</u> and login with your UW identity

Lecture 13 Activity

You will be assigned to breakout rooms. Please:

- Introduce yourself
- · Choose someone to share their screen, showing this PDF
- Consider the statement:

For all $a, b, c, m \in \mathbb{Z}, m > 0$ one has $a \equiv b \pmod{m} \rightarrow a + c \equiv b + c \pmod{m}$.

Proof.

Let $a, b, c \in \mathbb{Z}$ be arbitrary and let m > 0. Assume that $a \equiv b \pmod{m}$. Then $m \mid a - b$ and hence there is an integer x with mx = a - b. Then (a + c) - (b + c) = a - b = mxand so $m \mid (a + c) - (b + c)$. Then $a + c \equiv b + c \pmod{m}$ by definition of mod.

Definition: "a is congruent to b modulo m"									
For $a, b, m \in \mathbb{Z}$ with $m > 0$ $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$									
	Definition: "a divides b"								
	For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:								

 $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$

Let's start by looking a a small example:

 $0^2 = 0 \equiv 0 \pmod{4}$ $1^2 = 1 \equiv 1 \pmod{4}$ $2^2 = 4 \equiv 0 \pmod{4}$ $3^2 = 9 \equiv 1 \pmod{4}$ $4^2 = 16 \equiv 0 \pmod{4}$

Case 1 (n is even):

Let's start by looking a a small example:

 $0^{2} = 0 \equiv 0 \pmod{4}$ $1^{2} = 1 \equiv 1 \pmod{4}$ $2^{2} = 4 \equiv 0 \pmod{4}$ $3^{2} = 9 \equiv 1 \pmod{4}$ $4^{2} = 16 \equiv 0 \pmod{4}$

It looks like

$$\label{eq:new_relation} \begin{split} n &\equiv 0 \;(mod\;2) \rightarrow n^2 \equiv 0 \;(mod\;4) \text{, and} \\ n &\equiv 1 \;(mod\;2) \rightarrow n^2 \equiv 1 \;(mod\;4) \text{.} \end{split}$$

Case 1 (*n* is even): Suppose *n* is even. Then, n = 2k for some integer *k*. So, $n^2 = (2k)2 = 4k^2$. So, by definition of congruence, we have $n^2 \equiv 0 \pmod{4}$.

Let's start by looking a a small example:

 $0^{2} = 0 \equiv 0 \pmod{4}$ $1^{2} = 1 \equiv 1 \pmod{4}$ $2^{2} = 4 \equiv 0 \pmod{4}$ $3^{2} = 9 \equiv 1 \pmod{4}$ $4^{2} = 16 \equiv 0 \pmod{4}$

It looks like

$$\label{eq:new_relation} \begin{split} n &\equiv 0 \;(mod\;2) \rightarrow n^2 \equiv 0 \;(mod\;4) \text{, and} \\ n &\equiv 1 \;(mod\;2) \rightarrow n^2 \equiv 1 \;(mod\;4) \text{.} \end{split}$$

Case 1 (n is even): Done.

Case 2 (n is odd):

Let's start by looking a a small example:

 $0^2 = 0 \equiv 0 \pmod{4}$ $1^2 = 1 \equiv 1 \pmod{4}$ $2^2 = 4 \equiv 0 \pmod{4}$ $3^2 = 9 \equiv 1 \pmod{4}$ $4^2 = 16 \equiv 0 \pmod{4}$

It looks like

$$\label{eq:new_relation} \begin{split} n &\equiv 0 \;(mod\;2) \rightarrow n^2 \equiv 0 \;(mod\;4) \text{, and} \\ n &\equiv 1 \;(mod\;2) \rightarrow n^2 \equiv 1 \;(mod\;4) \text{.} \end{split}$$

Let *n* be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$ Let's start by looking a a small example: Case 1 (*n* is even): Done. $0^2 = 0 \equiv 0 \pmod{4}$ $1^2 = 1 \equiv 1 \pmod{4}$ Case 2 (*n* is odd): $2^2 = 4 \equiv 0 \pmod{4}$ Suppose *n* is odd. $3^2 = 9 \equiv 1 \pmod{4}$ Then, n = 2k + 1 for some integer k. $4^2 = 16 \equiv 0 \pmod{4}$ So, $n^2 = (2k + 1)^2$ $=4k^{2}+4k+1$ It looks like $= 4(k^2 + k) + 1.$ $n \equiv 0 \pmod{2} \rightarrow n^2 \equiv 0 \pmod{4}$, and So, by the earlier property of mod, $n \equiv 1 \pmod{2} \rightarrow n^2 \equiv 1 \pmod{4}$. we have $n^2 \equiv 1 \pmod{4}$.

Result follows by "proof by cases": n is either even or not even (odd)

n-bit Unsigned Integer Representation

- Represent integer *x* as sum of powers of 2:
 - If $\sum_{i=0}^{n-1} b_i 2^i$ where each $b_i \in \{0,1\}$

then representation is $b_{n-1}...b_2 b_1 b_0$

- For n = 8:
 - 99: 0110 0011
 - 18: 0001 0010

n-bit signed integers Suppose that $-2^{n-1} < x < 2^{n-1}$ First bit as the sign, n-1 bits for the value 99 = 64 + 32 + 2 + 118 = 16 + 2For n = 8: 99: 0110 0011 -18: 1001 0010

Any problems with this representation?

Two's Complement Representation

n bit signed integers, first bit will still be the sign bit

Suppose that $0 \le x < 2^{n-1}$, *x* is represented by the binary representation of *x* Suppose that $0 \le x \le 2^{n-1}$, -*x* is represented by the binary representation of $2^n - x$

Key property: Twos complement representation of any number y is equivalent to y, mod 2^n so arithmetic works mod 2^n

Sign-Magnitude vs. Two's Complement

	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
	1111	1110	1101	1100	1011	1010	1001	0000	0001	0010	0011	0100	0101	0110	0111
Sign-bit															
-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
1000	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110	0111
	Two's complement														

Two's Complement Representation

- For $0 < x \le 2^{n-1}$, -x is represented by the binary representation of $2^n x$
 - That is, the two's complement representation of any number y has the same value as y modulo 2^n .

• To compute this: Flip the bits of x then add 1: - All 1's string is $2^n - 1$, so Flip the bits of $x \equiv$ replace x by $2^n - 1 - x$ Then add 1 to get $2^n - x$

Basic Applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher

Scenario:

Map a small number of data values from a large domain $\{0, 1, \dots, M - 1\}$...

...into a small set of locations $\{0,1, ..., n-1\}$ so one can quickly check if some value is present

- hash(x) = x % p for p a prime close to n- or hash(x) = (ax + b)% p
- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur

Linear Congruential method

$$x_{n+1} = (ax_n + c) \% m$$

Choose random x_0 , a, c, m and produce a long sequence of x_n 's

- Caesar cipher, A = 1, B = 2, ...
 HELLO WORLD
- Shift cipher
 - -f(p) = (p + k) % 26 $-f^{-1}(p) = (p - k) \% 26$
- More general

-f(p) = (ap + b) % 26