CSE 311: Foundations of Computing

Lecture 13: Number theory \& modular arithmetic

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
- Cryptography
- Hashing
- Security
- Important tool set

Modular Arithmetic

- Arithmetic over a finite domain
- In computing, almost all computations are over a finite domain

I'm ALIVE!

```
public class Test {
    final static int SEC_IN_YEAR = 364*24*60*60*100;
    public static void main(String args[]) {
            System.out.println(
                "I will be alive for at least " +
                SEC_IN_YEAR * 101 + " seconds."
        );
    }
}
```


I'm ALIVE!

```
public class Test {
    final static int SEC_IN_YEAR = 364*24*60*60*100;
    public static void main(String args[]) {
            System.out.println(
                "I will be alive for at least " +
                    SEC_IN_YEAR * 101 + " seconds."
        );
    }
}
```

```
[ ----jGRASP exec: java Test
I will be alive for at least -186619904 seconds.
    ----jGRASP: operation complete.
```


Divisibility

Definition: "a divides b"
For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:

$$
a \mid b \leftrightarrow \exists k \in \mathbb{Z}(b=k a)
$$

Check Your Understanding. Which of the following are true?
5|1
25|5
5|0
$3 \mid 2$
1 | 5
5 | 25
$0 \mid 5$
$2 \mid 3$

Divisibility

Definition: "a divides b"
For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:

$$
a \mid b \leftrightarrow \exists k \in \mathbb{Z}(b=k a)
$$

Check Your Understanding. Which of the following are true?

Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$
there exist unique integers q, r with $0 \leq r<d$ such that $a=d q+r$.

To put it another wav, if we divide d into a, we get a unique quotient $q=a \operatorname{div} d$ and non-negative remainder $r=a \% d$

Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$
there exist unique integers q, r with $0 \leq r<d$ such that $a=d q+r$.

To put it another way, if we divide d into a, we get a unique quotient $q=a \operatorname{div} d$ and non-negative remainder $r=a \% d$

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
}
```

Note: $\mathrm{r} \geq 0$ even if $\mathrm{a}<0$. Not quite the same as in Java

Modular Arithmetic

Definition: "a is congruent to \mathbf{b} modulo \mathbf{m} "

$$
\begin{aligned}
& \text { For } a, b, m \in \mathbb{Z} \text { with } m>0 \\
& \qquad \quad a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
\end{aligned}
$$

Check Your Understanding. What do each of these mean? When are they true?
$x \equiv 0(\bmod 2)$
$-1 \equiv 19(\bmod 5)$
$y \equiv 2(\bmod 7)$

Modular Arithmetic

Definition: "a is congruent to b modulo m"

$$
\begin{aligned}
& \text { For } a, b, m \in \mathbb{Z} \text { with } m>0 \\
& \qquad a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
\end{aligned}
$$

Check Your Understanding. What do each of these mean? When are they true?
$x \equiv 0(\bmod 2)$
This statement is the same as saying " x is even"; so, any x that is even (including negative even numbers) will work.
$-1 \equiv 19(\bmod 5)$
This statement is true. $19-(-1)=20$ which is divisible by 5
$y \equiv 2(\bmod 7)$
This statement is true for y in $\{. . .,-12,-5,2,9,16, \ldots\}$. In other words, all y of the form 2+7k for k an integer.

Arithmetic, mod 7

Modular Arithmetic: A Property

Let a, b, m be integers with $m>0$.
Then, $a \equiv b(\bmod m)$ if and only if $a \% m=b \% m$.
Suppose that $a \equiv b(\bmod m)$.

Suppose that $a \% m=b \% m$.

Modular Arithmetic: A Property

Let a, b, m be integers with $m>0$.
Then, $a \equiv b(\bmod m)$ if and only if $a \% m=b \% m$.
Suppose that $a \equiv b(\bmod m)$.
Then, $m \mid(a-b)$ by definition of congruence.
So, $a-b=k m$ for some integer k by definition of divides.
Therefore, $a=b+k m$.
Taking both sides modulo m we get:

$$
a \% m=(b+k m) \% m=b \% m
$$

Suppose that $a \% m=b \% m$.
By the division theorem, $a=m q+(a \% m)$ and

$$
b=m s+(b \% m) \text { for some integers } q, s .
$$

Then, $a-b=(m q+(a \% m))-(m s+(b \% m))$

$$
=m(q-s)+(a \% m-b \% m)
$$

$$
=m(q-s) \text { since } a \% m=b \% m
$$

Therefore, $m \mid(a-b)$ and so $a \equiv b(\bmod m)$.

The $\% m$ function vs the $\equiv(\bmod m)$ predicate

- What we have just shown
- The $\% m$ function takes any $a \in \mathbb{Z}$ and maps it to a remainder $a \% m \in\{0,1, . ., m-1\}$.
- Imagine grouping together all integers that have the same value of the $\% m$ function
That is, the same remainder in $\{0,1, . ., m-1\}$.
- The $\equiv(\bmod m)$ predicate compares $a, b \in \mathbb{Z}$. It is true if and only if the $\% m$ function has the same value on a and on b.
That is, a and b are in the same group.

Modular Arithmetic: Basic Property

Let \boldsymbol{m} be a positive integer.
If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and $\boldsymbol{b} \equiv \boldsymbol{c}(\bmod \boldsymbol{m})$, then $\boldsymbol{a} \equiv \boldsymbol{c}(\bmod \boldsymbol{m})$

Modular Arithmetic: Basic Property

> Let \boldsymbol{m} be a positive integer.
> If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and $\boldsymbol{b} \equiv \boldsymbol{c}(\bmod \boldsymbol{m})$, then $\boldsymbol{a} \equiv \boldsymbol{c}(\bmod \boldsymbol{m})$

Suppose that $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$.
Then, by the previous property, we have
$a \% m=b \% m$ and $b \% m=c \% m$.

Putting these together, we have $a \% m=c \% m$, which says that $a \equiv c(\bmod m)$, by definition.

So "三" behaves like "=" in that sense. And that is not the only similarity...

Modular Arithmetic: Addition Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m})$, then $\boldsymbol{a}+\boldsymbol{c} \equiv \boldsymbol{b}+\boldsymbol{d}(\bmod \boldsymbol{m})$

Modular Arithmetic: Addition Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m})$, then $\boldsymbol{a}+\boldsymbol{c} \equiv \boldsymbol{b}+\boldsymbol{d}(\bmod \boldsymbol{m})$

Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Unrolling definitions gives us some k such that $a-b=k m$, and some j such that $c-d=j m$.

Adding the equations together gives us $(a+c)-(b+d)=m(k+j)$. Now, re-applying the definition of congruence gives us $a+c \equiv b+d(\bmod m)$.

Modular Arithmetic: Multiplication Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m})$, then $\boldsymbol{a} \boldsymbol{c} \equiv \boldsymbol{b} \boldsymbol{d}(\bmod \boldsymbol{m})$

Modular Arithmetic: Multiplication Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv \boldsymbol{b}(\boldsymbol{\operatorname { m o d }} \boldsymbol{m})$ and $\boldsymbol{c} \equiv \boldsymbol{d}(\bmod \boldsymbol{m})$, then $\boldsymbol{a} \boldsymbol{c} \equiv \boldsymbol{b} \boldsymbol{d}(\bmod \boldsymbol{m})$

Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Unrolling definitions gives us some k such that $a-b=k m$, and some j such that $c-d=j m$.

Then, $a=k m+b$ and $c=j m+d$. Multiplying both together gives us $a c=(k m+b)(j m+d)=k j m^{2}+k m d+b j m+b d$.

Re-arranging gives us $a c-b d=m(k j m+k d+b j)$. Using the definition of congruence gives us $a c \equiv b d(\bmod m)$.

Lecture 13 Activity

You will be assigned to breakout rooms. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Consider the statement:

$$
\begin{aligned}
& \text { For all } a, b, c, m \in \mathbb{Z}, m>0 \text { one has } \\
& \qquad a \equiv b(\bmod m) \rightarrow a+c \equiv b+c(\bmod m)
\end{aligned}
$$

- Discuss what the statement means.
- Prove the statement.

$$
\begin{array}{|c}
\text { Definition: "a is congruent to } \mathbf{b} \text { modulo } \mathbf{~ m " ~} \\
\hline \text { For } a, b, m \in \mathbb{Z} \text { with } m>0 \\
a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)
\end{array}
$$

Fill out the poll everywhere for Activity Credit! Go to pollev.com/philipmg and login with your UW identity

Definition: "a divides $\mathbf{b}^{\prime \prime}$
For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$: $\quad a \mid b \leftrightarrow \exists k \in \mathbb{Z} \quad(b=k a)$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv \mathbf{0}(\bmod 4)$ or $\boldsymbol{n}^{2} \equiv 1(\bmod 4)$
Let's start by looking a a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$
Case 1 (n is even):
Let's start by looking a a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

It looks like

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and } \\
& n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4) .
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv 0(\bmod 4)$ or $\boldsymbol{n}^{2} \equiv 1(\bmod 4)$
Case 1 (n is even):
Let's start by looking a a small example:
Suppose n is even.
Then, $n=2 k$ for some integer k.

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

So, $n^{2}=(2 k) 2=4 k^{2}$.
So, by definition of congruence, we have $n^{2} \equiv 0(\bmod 4)$.

It looks like

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and } \\
& n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4) .
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$

Case 1 (n is even): Done.
Case 2 (n is odd):

Let's start by looking a a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

It looks like

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and } \\
& n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4) .
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv 0(\bmod 4)$ or $\boldsymbol{n}^{2} \equiv 1(\bmod 4)$
Case 1 (n is even): Done.
Let's start by looking a a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4)
\end{aligned}
$$

Case 2 (n is odd):
Suppose n is odd.
Then, $n=2 k+1$ for some integer k.

$$
\text { So, } n^{2}=(2 k+1)^{2}
$$

$$
=4 k^{2}+4 k+1
$$

It looks like

$$
\mathrm{n} \equiv 0(\bmod 2) \rightarrow \mathrm{n}^{2} \equiv 0(\bmod 4), \text { and }
$$

So, by the earlier property of mod, $n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4)$. we have $n^{2} \equiv 1(\bmod 4)$.

Result follows by "proof by cases": n is either even or not even (odd)

n-bit Unsigned Integer Representation

- Represent integer x as sum of powers of 2 :

If $\sum_{i=0}^{n-1} b_{i} 2^{i}$ where each $b_{i} \in\{0,1\}$
then representation is $b_{n-1} \ldots b_{2} b_{1} b_{0}$
$99=64+32+2+1$
$18=16+2$

- For $\mathrm{n}=8$:

99: 01100011
18: 00010010

Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that $-2^{n-1}<x<2^{n-1}$
First bit as the sign, $n-1$ bits for the value

$$
\begin{aligned}
& 99=64+32+2+1 \\
& 18=16+2
\end{aligned}
$$

For $\mathrm{n}=8$:
99: 01100011
-18: 10010010
Any problems with this representation?

Two's Complement Representation

n bit signed integers, first bit will still be the sign bit
Suppose that $0 \leq x<2^{n-1}$
x is represented by the binary representation of x
Suppose that $0 \leq x \leq 2^{n-1}$
$-x$ is represented by the binary representation of $2^{n}-x$
Key property: Twos complement representation of any number \boldsymbol{y} is equivalent to $y, \bmod 2^{n}$ so arithmetic works $\bmod 2^{n}$

$$
\begin{aligned}
& 99=64+32+2+1 \\
& 18=16+2
\end{aligned}
$$

For $\mathrm{n}=8$:
99: 01100011
-18: 11101110

Sign-Magnitude vs. Two's Complement

-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
1111	1110	1101	1100	1011	1010	1001	0000	0001	0010	0011	0100	0101	0110	0111
	Sign-bit													

-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
1000	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110	0111

Two's complement

Two's Complement Representation

- For $0<x \leq 2^{n-1},-x$ is represented by the binary representation of $2^{n}-x$
- That is, the two's complement representation of any number y has the same value as y modulo 2^{n}.
- To compute this: Flip the bits of x then add 1:
- All 1^{\prime} s string is $2^{n}-1$, so

Flip the bits of $x \equiv$ replace x by $2^{n}-1-x$
Then add 1 to get $2^{n}-x$

Basic Applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher

Hashing

Scenario:
Map a small number of data values from a large domain $\{0,1, \ldots, M-1\} \ldots$
...into a small set of locations $\{0,1, \ldots, n-1\}$ so one can quickly check if some value is present

- $\operatorname{hash}(x)=x \% p$ for p a prime close to n
- or hash $(x)=(a x+b) \% p$
- Depends on all of the bits of the data
- helps avoid collisions due to similar values
- need to manage them if they occur

Pseudo-Random Number Generation

Linear Congruential method

$$
x_{n+1}=\left(a x_{n}+c\right) \% m
$$

Choose random x_{0}, a, c, m and produce
a long sequence of x_{n} 's

Simple Ciphers

- Caesar cipher, $\mathrm{A}=1, \mathrm{~B}=2, \ldots$
- HELLO WORLD
- Shift cipher

$$
\begin{aligned}
& -f(p)=(p+k) \% 26 \\
& -f^{-1}(p)=(p-k) \% 26
\end{aligned}
$$

- More general

$$
-\mathrm{f}(\mathrm{p})=(\mathrm{ap}+\mathrm{b}) \% 26
$$

