
CSE 311: Foundations of Computing

Lecture 14:  More number theory & modular 
arithmetic



Recap from last lecture

• Example: −1 ≡ 9 (𝑚𝑜𝑑 5)

For 𝑎 ∈ ℤ, 𝑏 ∈ ℤ with 𝑎 ≠ 0:
𝑎 | 𝑏 ↔ ∃𝑘 ∈ ℤ (𝑏 = 𝑘𝑎)

Definition: “a divides b”
For 𝑎, 𝑏,𝑚 ∈ ℤ with 𝑚 > 0

𝑎 ≡ 𝑏 mod 𝑚 ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”



Recap from last lecture

• Example: −1 ≡ 9 (𝑚𝑜𝑑 5)
• Division Theorem. Any integer 𝑎, 𝑑 with 𝑑 ≥ 1, can write 

uniquely 𝑎 = 𝑎 𝑑𝑖𝑣 𝑑 ⋅ 𝑑 + (𝑎 % 𝑑) where 0 ≤ 𝑎 % 𝑑 < 𝑑.
• Example: −1% 5 = 4, 9 % 4 = 1

For 𝑎 ∈ ℤ, 𝑏 ∈ ℤ with 𝑎 ≠ 0:
𝑎 | 𝑏 ↔ ∃𝑘 ∈ ℤ (𝑏 = 𝑘𝑎)

Definition: “a divides b”
For 𝑎, 𝑏,𝑚 ∈ ℤ with 𝑚 > 0

𝑎 ≡ 𝑏 mod 𝑚 ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”



Recap from last lecture

• Example: −1 ≡ 9 (𝑚𝑜𝑑 5)
• Division Theorem. Any integer 𝑎, 𝑑 with 𝑑 ≥ 1, can write 

uniquely 𝑎 = 𝑎 𝑑𝑖𝑣 𝑑 ⋅ 𝑑 + (𝑎 % 𝑑) where 0 ≤ 𝑎 % 𝑑 < 𝑑.
• Example: −1% 5 = 4, 9 % 4 = 1

For 𝑎 ∈ ℤ, 𝑏 ∈ ℤ with 𝑎 ≠ 0:
𝑎 | 𝑏 ↔ ∃𝑘 ∈ ℤ (𝑏 = 𝑘𝑎)

Definition: “a divides b”
For 𝑎, 𝑏,𝑚 ∈ ℤ with 𝑚 > 0

𝑎 ≡ 𝑏 mod 𝑚 ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”

Facts: 
• 𝑎 ≡ 𝑏 (mod 𝑚) iff 𝑎 %𝑚 = 𝑏 %𝑚
• 𝑎 ≡ 𝑏 (mod 𝑚)) ∧ (𝑏 ≡ 𝑐 (mod 𝑚) → 𝑎 ≡ 𝑐 (mod 𝑚)
• (𝑎 ≡ 𝑏 (mod 𝑚)) ∧ (𝑐 ≡ 𝑑 (mod 𝑚)) → 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (𝑚𝑜𝑑 𝑚)
• (𝑎 ≡ 𝑏 (mod 𝑚)) ∧ (𝑐 ≡ 𝑑 (mod 𝑚)) → 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑚)



Example

Let 𝒏 be an integer.
Prove that 𝒏𝟐 ≡ 𝟎 (𝐦𝐨𝐝 𝟒) or 𝒏𝟐 ≡ 𝟏 (𝐦𝐨𝐝 𝟒)

Let’s start by looking a small example:
02 = 0   ≡ 0 (mod 4)
12 = 1   ≡ 1 (mod 4)
22 = 4   ≡ 0 (mod 4)
32 = 9   ≡ 1 (mod 4)
42 = 16 ≡ 0 (mod 4)



Example

Let’s start by looking a small example:
02 = 0   ≡ 0 (mod 4)
12 = 1   ≡ 1 (mod 4)
22 = 4   ≡ 0 (mod 4)
32 = 9   ≡ 1 (mod 4)
42 = 16 ≡ 0 (mod 4)

It looks like 
n ≡ 0 (mod 2) → n2 ≡ 0 (mod 4), and              
n ≡ 1 (mod 2) → n2 ≡ 1 (mod 4).

Case 1 (n is even):

Let 𝒏 be an integer.
Prove that 𝒏𝟐 ≡ 𝟎 (𝐦𝐨𝐝 𝟒) or 𝒏𝟐 ≡ 𝟏 (𝐦𝐨𝐝 𝟒)



Example

Let’s start by looking a small example:
02 = 0   ≡ 0 (mod 4)
12 = 1   ≡ 1 (mod 4)
22 = 4   ≡ 0 (mod 4)
32 = 9   ≡ 1 (mod 4)
42 = 16 ≡ 0 (mod 4)

It looks like 
n ≡ 0 (mod 2) → n2 ≡ 0 (mod 4), and              
n ≡ 1 (mod 2) → n2 ≡ 1 (mod 4).

Case 1 (𝑛 is even):
Suppose 𝑛 is even.  
Then, 𝑛 = 2𝑘 for some integer 𝑘.
So, 𝑛2 = 2𝑘 " = 4𝑘2. 
So, by  definition of congruence, 
we have 𝑛2 ≡ 0 (mod 4).

Let 𝒏 be an integer.
Prove that 𝒏𝟐 ≡ 𝟎 (𝐦𝐨𝐝 𝟒) or 𝒏𝟐 ≡ 𝟏 (𝐦𝐨𝐝 𝟒)



Example

Let’s start by looking a a small example:
02 = 0   ≡ 0 (mod 4)
12 = 1   ≡ 1 (mod 4)
22 = 4   ≡ 0 (mod 4)
32 = 9   ≡ 1 (mod 4)
42 = 16 ≡ 0 (mod 4)

It looks like 
n ≡ 0 (mod 2) → n2 ≡ 0 (mod 4), and              
n ≡ 1 (mod 2) → n2 ≡ 1 (mod 4).

Case 1 (n is even): Done.

Case 2 (n is odd):

Let 𝒏 be an integer.
Prove that 𝒏𝟐 ≡ 𝟎 (𝐦𝐨𝐝 𝟒) or 𝒏𝟐 ≡ 𝟏 (𝐦𝐨𝐝 𝟒)



Example

Let’s start by looking a a small example:
02 = 0   ≡ 0 (mod 4)
12 = 1   ≡ 1 (mod 4)
22 = 4   ≡ 0 (mod 4)
32 = 9   ≡ 1 (mod 4)
42 = 16 ≡ 0 (mod 4)

It looks like 
n ≡ 0 (mod 2) → n2 ≡ 0 (mod 4), and              
n ≡ 1 (mod 2) → n2 ≡ 1 (mod 4).

Case 1 (𝑛 is even): Done.

Case 2 (𝑛 is odd):
Suppose 𝑛 is odd.
Then, 𝑛 = 2𝑘 + 1 for some integer 𝑘.
So, 𝑛2 = 2𝑘 + 1 "

= 4𝑘2+ 4𝑘 + 1
= 4(𝑘2+ 𝑘) + 1. 

So, by the earlier property of mod,
we have 𝑛2 ≡ 1 (mod 4).

Let 𝒏 be an integer.
Prove that 𝒏𝟐 ≡ 𝟎 (𝐦𝐨𝐝 𝟒) or 𝒏𝟐 ≡ 𝟏 (𝐦𝐨𝐝 𝟒)

Result follows by “proof by cases”: n is either even or not even (odd)



• Represent integer 𝑥 as sum of powers of 2:

If  ∑/01234 𝑏/2/ where each 𝑏𝑖 ∈ {0,1}
then representation is bn-1...b2 b1 b0

99 = 64 + 32 + 2 + 1
18 = 16 + 2

• For n = 8:
99:    0110 0011
18:    0001  0010

n-bit Unsigned Integer Representation



Sign-Magnitude Integer Representation

𝑛-bit signed integers
Suppose that −2!"# < 𝑥 < 2!"#
First bit as the sign, 𝑛 − 1 bits for the value

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:
99:    0110 0011
-18:   1001  0010

Any problems with this representation?



Two’s Complement Representation

𝑛 bit signed integers, first bit will still be the sign bit

Suppose that 0 ≤ 𝑥 < 2#$% ,
𝑥 is represented by the binary representation of 𝑥

Suppose that 0 ≤ 𝑥 ≤ 2#$% , 
−𝑥 is represented by the binary representation of 2# − 𝑥

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:
99:    0110 0011
-18:    1110 1110

Key property: Twos complement representation of any number 𝒚
is equivalent to 𝒚,𝐦𝐨𝐝 𝟐𝒏 so arithmetic works 𝐦𝐨𝐝 𝟐𝒏



Sign-Magnitude vs. Two’s Complement

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1111 1110 1101 1100 1011 1010 1001 0000 0001 0010 0011 0100 0101 0110 0111

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

Sign-bit

Two’s complement



Two’s Complement Representation

• For                         ,  −𝑥 is represented by the 
binary representation of 2! − 𝑥
– That is, the two’s complement representation of 

any number 𝑦 has the same value as 𝑦 modulo 2𝑛.

• To compute this:  Flip the bits of 𝑥 then add 1:
– All 1’s string is  2! − 1, so

Flip the bits of 𝑥 º replace 𝑥 by 2! − 1 − 𝑥
Then add 1 to get 2! − 𝑥



Basic Applications of mod

• Hashing 
• Pseudo random number generation
• Simple cipher



Hashing

Scenario:  
Map a small number of data values from a large 
domain 0, 1, … ,𝑀 − 1 ...
...into a small set of locations 0,1, … , 𝑛 − 1 so 
one can quickly check if some value is present

• hash 𝑥 = 𝑥 % 𝑝 for 𝑝 a prime close to 𝑛
– or hash 𝑥 = 𝑎𝑥 + 𝑏 % 𝑝

• Depends on all of the bits of the data 
– helps avoid collisions due to similar values
– need to manage them if they occur



Pseudo-Random Number Generation

Linear Congruential method

𝑥!"# = 𝑎𝑥! + 𝑐 %𝑚

Choose random 𝑥*, 𝑎, 𝑐, 𝑚 and produce
a long sequence of 𝑥!’s



Simple Ciphers

• Caesar cipher,  A = 1, B = 2, . . .
– HELLO WORLD

• Shift cipher
– f(p) = (p + k) % 26
– f-1(p) = (p – k) % 26

• More general
– f(p) = (ap + b) % 26



Primality

An integer p greater than 1 is called prime if the 
only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not 
prime is called composite.



Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a 
unique prime factorization

48 =  2 • 2 • 2 • 2 • 3
591 = 3 • 197
45,523 = 45,523
321,950 = 2 • 5 • 5 • 47 • 137
1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803



Lecture 14 Activity
• You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share screen, showing this PDF 
• Complete the following proof: 

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login 
with your UW identity

(Euclid’s Theorem): There are an infinite number of primes.
Proof: Suppose for the sake of contradiction that there are only a finite number of 
primes and call the full list 𝑝", 𝑝#, … , 𝑝$.
Define the number 𝑃 = 𝑝"9 𝑝# 9 𝑝% 9 ⋯ 9 𝑝$ and let 𝑄 = 𝑃 + 1. (Note that 𝑄 > 1.)
• Case 1: 𝑄 is prime:   ……
• Case 2: 𝑄 is composite: ……
Both cases are contradictions, so the assumption is false.

http://pollev.com/thomas311


Famous Algorithmic Problems

• Primality Testing
– Given an integer 𝑛, determine if 𝑛 is prime

• Factoring
– Given an integer 𝑛, determine the prime 

factorization of 𝑛



Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413



12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514
19597459856902143413

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317
43087737814467999489

367460436667995904282446337996279526322791581643
430876426760322838157396665112792333734171433968
10270092798736308917



Greatest Common Divisor

GCD(a, b): 
Largest integer 𝑑 such that 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏

• GCD(100, 125) = 
• GCD(17, 49) = 
• GCD(11, 66) =
• GCD(13, 0) = 
• GCD(180, 252) =



GCD and Factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1) • 11min(1,0) • 13min(0,1)

Factoring is expensive!    
Can we compute GCD(a,b) without factoring?



Useful GCD Fact

If a and b are positive integers, then 
gcd(a,b) = gcd(b, a % b)



Useful GCD Fact

If a and b are positive integers, then 
gcd(a,b) = gcd(b, a % b)

Proof:
By definition of %, 𝑎 = 𝑞𝑏 + (𝑎 % 𝑏) for some integer 𝑞 = 𝑎 div 𝑏.  

Let 𝑑 = gcd(𝑎, 𝑏).  Then 𝑑|𝑎 and 𝑑|𝑏 so 𝑎 = 𝑘𝑑 and 𝑏 = 𝑗𝑑
for some integers 𝑘 and 𝑗. 

Therefore (𝑎 % 𝑏) = 𝑎 – 𝑞𝑏 = 𝑘𝑑 – 𝑞𝑗𝑑 = (𝑘 – 𝑞𝑗)𝑑.  
So, 𝑑|(𝑎 % 𝑏) and since 𝑑|𝑏 we must have 𝑑 ≤ gcd(𝑏, 𝑎 % 𝑏).



Useful GCD Fact

If a and b are positive integers, then 
gcd(a,b) = gcd(b, a % b)

Proof:
By definition of %, 𝑎 = 𝑞𝑏 + (𝑎 % 𝑏) for some integer 𝑞 = 𝑎 div 𝑏.  

Let 𝑑 = gcd(𝑎, 𝑏).  Then 𝑑|𝑎 and 𝑑|𝑏 so 𝑎 = 𝑘𝑑 and 𝑏 = 𝑗𝑑
for some integers 𝑘 and 𝑗. 

Therefore (𝑎 % 𝑏) = 𝑎 – 𝑞𝑏 = 𝑘𝑑 – 𝑞𝑗𝑑 = (𝑘 – 𝑞𝑗)𝑑.  
So, 𝑑|(𝑎 % 𝑏) and since 𝑑|𝑏 we must have 𝑑 ≤ gcd(𝑏, 𝑎 % 𝑏).

Now, let 𝑒 = gcd(𝑏, 𝑎 % 𝑏).  Then 𝑒|𝑏 and 𝑒 |(𝑎 % 𝑏) so
𝑏 = 𝑚𝑒 and (𝑎 % 𝑏) = 𝑛𝑒 for some integers 𝑚 and 𝑛.    

Therefore  𝑎 = 𝑞𝑏 + (𝑎 % 𝑏) = 𝑞𝑚𝑒 + 𝑛𝑒 = (𝑞𝑚 + 𝑛)𝑒.    
So, 𝑒|𝑎 and since 𝑒|𝑏 we must have 𝑒 ≤ gcd(𝑎, 𝑏).

It follows that gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎 % 𝑏).



Another simple GCD fact

If a is a positive integer,  gcd(a,0) = a.



Euclid’s Algorithm

gcd(a, b) = gcd(b, a mod b), gcd(a,0)=a

int gcd(int a, int b){ /* a >= b, b >= 0 */
if (b == 0) {

return a;
}
else {

return gcd(b, a % b);
}

Example: GCD(660, 126)



Euclid’s Algorithm

gcd(660,126) =

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎 mod 𝑏 to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.

gcd(660,126) 



Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)
= gcd(30, 126 % 30) = gcd(30, 6)
= gcd(6, 30 % 6) = gcd(6, 0)
= 6

gcd(660,126) 

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎 % 𝑏 to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.



Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)
= gcd(30, 126 % 30) = gcd(30, 6)
= gcd(6, 30 % 6) = gcd(6, 0)
= 6

gcd(660,126) 

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎 mod 𝑏 to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.

660 = 5 * 126 + 30
126 = 4 *   30 +   6
30 = 5 *     6 +   0

In tableau form:



Bézout’s theorem

If a and b are positive integers, then there exist 
integers s and t such that 

gcd(a,b) = sa + tb.



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 1 (Compute GCD & Keep Tableau Information):

gcd(35,	27)	=	gcd(27,	35	mod	27)	=	gcd(27,	8)						35	=	1	*	27	+	8	
a b b a  mod b = r b r a  = q * b  + r



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 1 (Compute GCD & Keep Tableau Information):

gcd(35,	27)	=	gcd(27,	35	mod	27)	=	gcd(27,	8)					35	=	1	*	27	+	8
=	gcd(8,	27	mod	8)						=	gcd(8,	3)								27	=	3	*	8			+	3
=	gcd(3,	8	mod	3)								=	gcd(3,	2)										8		=	2	*	3			+	2
=	gcd(2,	3	mod	2)									=	gcd(2,	1)										3		=	1	*	2			+	1
=	gcd(1,	2	mod	1)	 =	gcd(1,	0)

a b b a  mod b = r b r a  = q * b  + r



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 2 (Solve the equations for r):

a   =  q * b  + r
35	=	1	*	27	+	8
27	=	3	*	8			+	3
8			=	2	*	3			+	2
3 =	1	*	2			+	1
2					=	2	*	1			+	0

r  =  a  -- q * b
8	=	35	– 1	*	27



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 2 (Solve the equations for r):

a   =  q * b  + r
35	=	1	*	27	+	8
27	=	3	*	8			+	3
8			=	2	*	3			+	2
3 =	1	*	2			+	1
2					=	2	*	1			+	0

r  =  a  -- q * b
8	=	35	– 1	*	27
3	=	27	– 3	*	8
2	=		8		– 2	*	3
1	=		3		– 1	*	2



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	– 1	*	(8	– 2	*	3)
=			3	– 8	+	2	*	3
=	(–1)	*	8	+	3	*	3

Plug in the def of 2

Re-arrange into
3’s and 8’s



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	– 1	*	(8	– 2	*	3)
=			3	– 8	+	2	*	3
=	(–1)	*	8	+	3	*	3

=	(–1)	*	8	+	3	*	(27	– 3	*	8)
=	(–1)	*	8	+	3	*	27	+	(–9)	*	8
=			3	*	27		+	(–10)	*	8

=			3	*	27		+	(–10)	*	(35	– 1	*	27)
=			3	*	27			+	(–10)	*	35	+	10	*	27
=			13	*	27	+	(–10)	*	35

Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s

Re-arrange into
27’s and 35’s



Multiplicative inverse mod 𝑚

Suppose GCD 𝑎,𝑚 = 1

By Bézout’s Theorem, there exist integers 𝑠 and 𝑡
such that 𝑠𝑎 + 𝑡𝑚 = 1.

𝑠 %𝑚 is the multiplicative inverse of 𝑎:
1 = 𝑠𝑎 + 𝑡𝑚 %𝑚 = 𝑠𝑎 %𝑚



Example

Solve:  7𝑥 ≡ 1 (mod 26)



Example

Solve:  7𝑥 ≡ 1 (mod 26)

gcd(26, 7) = gcd(7, 5) = gcd(5, 2) = gcd(2, 1) = 1

26 = 7 ∗ 3 + 5 5 = 26– 7 ∗ 3
7 = 5 ∗ 1 + 2 2 = 7– 5 ∗ 1
5 = 2 ∗ 2 + 1 1 = 5– 2 ∗ 2

1 = 5 – 2 ∗ (7 – 5 ∗ 1)
= (– 7) ∗ 2 + 3 ∗ 5
= –7 ∗ 2 + 3 ∗ (26 – 7 ∗ 3)
= −11 ∗ 7 + 3 ∗ 26

Now (−11) mod 26 = 15.   So, 𝑥 = 15 + 26𝑘 for 𝑘 ∈ ℤ.
Multiplicative inverse of 7 mod 26



Example of a more general equation

Now solve:  7𝑦 ≡ 3 (mod 26)

We already computed that 15 is the multiplicative 
inverse of 7 modulo 26:

That is,  7 C 15 ≡ 1 (mod 26)

By the multiplicative property of mod we have
7 C 15 C 3 ≡ 3 (mod 26)

So any 𝑦 ≡ 15 C 3 mod 26 is a solution. 
That is, 𝑦 = 19 + 26𝑘 for any integer 𝑘 is a solution.



Math mod a prime is especially nice

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

gcd(𝑎,𝑚) = 1 if 𝑚 is prime and 0 < 𝑎 < 𝑚 so 
can always solve these equations mod a prime.

mod 7


