CSE 311.: Foundations of Computing

Lecture 14: More number theory & modular
arithmetic
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Recap from last lecture

Definition: “a divides b”

Fora € Z,b € Z with a # O:
\ aIb<—>ﬂkEZ(b=ka) J

 Example: —1 =9 (mmod 5)

Definition: “ais congruent to b modulo m”

Fora,b,m € Z withm > 0

L a=b (modm) & m|(a —b)

J




Recap from last lecture

Definition: “a divides b” Definition: “ais congruent to b modulo m”
Fora € Z,b € Z with a # 0: Fora,b,m € Z withm > 0
__albodkeZ (b=ka) J \ a=b(modm) ©m|(a —b) )

 Example: —1 =9 (mmod 5)

« Division Theorem. Any integer a, d with d = 1, can write
uniquelya = (adivd)-d+ (a% d) where 0 < a%d < d.

* Example: —1%5=4, 9% 4 =1



Recap from last lecture

Definition: “a divides b” Definition: “ais congruent to b modulo m”
Fora € Z,b € Z with a # 0: Fora,b,m € Z withm > 0
__albodkeZ (b=ka) J \ a=b(modm) ©m|(a —b) )

 Example: —1 =9 (mmod 5)

« Division Theorem. Any integer a, d with d = 1, can write
uniquelya = (adivd)-d+ (a% d) where 0 < a%d < d.

* Example: —1%5=4, 9% 4 =1

Facts:

* a=b(modm)iffa% m=>b%m

* (a=b(modm))A(b=c(modm)) - a=c(modm)

* (a=b(modm))A(c=d (modm)) »>a+c=>b+d(modm)
* (a=b(modm))A(c=d(modm)) —» ac = bd (mod m)



Example

Let n be an integer.
Prove that n? = 0 (mod 4) orn? = 1 (mod 4)

Let’s start by looking a small example:
02=0 =0 (mod4)
12=1 =1 (mod 4)
22=4 =0 (mod 4)
32=9 =1 (mod 4)
42 =16 =0 (mod 4)




Example

Let n be an integer.
Prove that n? = 0 (mod 4) orn? = 1 (mod 4)

Let’s start by looking a small example:
02=0 =0 (mod4)
12=1 =1 (mod 4)
22=4 =0 (mod 4)
32=9 =1 (mod 4)
42 =16 =0 (mod 4)

Case 1 (nis even):

It looks like
n =0 (mod 2) — n2 =0 (mod 4), and
n=1(mod2)— n2=1(mod 4).



Example

Let n be an integer.
Prove that n? = 0 (mod 4) or n? = 1 (mod 4)

Let’s start by looking a small example:

S . 02=0 =0 (mod 4)
uppose n is even. 12=1 =1 (mod 4)

Then, n = 2k for some integer k. 22=4 =0 (mod 4)
So, n? = (Zk)2 = 4k2. 32=9 =1 (mod 4)
So, by definition of congruence, 42 =16 =0 (mod 4)
we have n? = 0 (mod 4).

Case 1 (n is even):

It looks like
n =0 (mod 2) — n2 =0 (mod 4), and
n=1(mod2)— n2=1(mod 4).



Example

Let n be an integer.
Prove that n? = 0 (mod 4) orn? = 1 (mod 4)

Let’s start by looking a a small example:
02=0 =0 (mod 4)
2-1 =
Case 2 (n is odd): ;2 ;111 ;(1) §223 2;
32=9 =1 (mod 4)
42 =16 =0 (mod 4)

Case 1 (nis even): Done.

It looks like
n =0 (mod 2) — n2 =0 (mod 4), and
n=1(mod2)— n2=1(mod 4).



Example

Let n be an integer.
Prove that n? = 0 (mod 4) or n? = 1 (mod 4)

Let’s start by looking a a small example:
02=0 =0 (mod 4)
Case 2 (n is odd): 12=1 =1(mod 4)
Suppose n is odd. 22=4 =0(mod 4)
Then, n = 2k + 1 for some integer k. 32 =9 =1(mod4)
So, n? = (2k + 1)2 42 =16 =0 (mod 4)
=4k* + 4k + 1 It looks like
=4(k*+ k) + 1. n =0 (mod 2) — n2 = 0 (mod 4), and
So, by the earlier property of mod, n=1(mod 2) — n? =1 (mod 4).
we have n? = 1 (mod 4).

Case 1 (n is even): Done.

Result follows by “proof by cases”: n is either even or not even (odd)



n-bit Unsighed Integer Representation

* Represent integer x as sum of powers of 2:
If Y b;2" where each b; € {0,1}

then representationis b, ;...b, b, b,

99=64+32+2+1
18=16+2

* Forn=a8:
99. 0110 0011
18: 0001 0010



Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that =21 < x < 271
First bit as the sign, n — 1 bits for the value

99=64+32+2+1
18 =16 + 2

Forn = 8:
99: 0110 0011
-18: 1001 0010

Any problems with this representation?



Two’s Complement Representation

n bit signed integers, first bit will still be the sign bit

Suppose that 0 < x < 2™1

x iIs represented by the binary representatlon of x
Suppose that 0 < x < 2™

—x iIs represented by the binary representatlon of 2" —

Key property: Twos complement representation of any number y
IS equivalent to y, mod 2" so arithmetic works mod 2"

99=64+32+2+1
18 =16 + 2

Forn=8:
99: 01100011
-18: 1110 1110



Sign-Magnitude vs. Two’'s Complement

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1111 1110 1101 1100 1011 1010 1001 O0OOO 0001 0010 OO11 O100 0101 0110 0111

Sign-bit

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1000 1001 1010 1011 1100 1101 1110 1111 OOOO 0001 0OO10 0011 0100 0101 0110 oO111

Two’s complement



Two’s Complement Representation

e For 0 < x <271, —x isrepresented by the
binary representation of 2™ — x

— That is, the two’s complement representation of
any number y has the same value as y modulo 2",

* To compute this: Flip the bits of x then add 1:
— All 1’s string is 2™ — 1, so
Flip the bits of x =replace x by 2" — 1 — x
Then add 1 to get 2" — x



Basic Applications of mod

* Hashing
* Pseudo random number generation
* Simple cipher



Hashing

Scenatio:
Map a small number of data values from a large
domain {0,1,...,M — 1} ...

...into a small set of locations {0,1, ..., n — 1} so
one can quickly check if some value is present

* hash(x) = x % p for p a prime close ton
—or hash(x) = (ax +b)%p

 Depends on all of the bits of the data

— helps avoid collisions due to similar values
— need to manage them if they occur



Pseudo-Random Number Generation

Linear Congruential method

Xn+q1 = (ax, +c) % m

Choose random x,, a, ¢, m and produce
a long sequence of x,;’s



Simple Ciphers

 Caesar cipher, A=1,B=2,...
— HELLO WORLD
e Shift cipher
—f(p) =(p + k) % 26
—flp) = (p—k) % 26
* More general
—f(p) = (ap + b) % 26



Primality

An integer p greater than 1 is called prime if the
only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not
prime is called composite.



Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a
unique prime factorization

48 = 20222+3

591 =3+197

45,523 = 45,523

321,950 =2+55°47 137
1,234,567,890 =233+ 5+ 3,607 - 3,803



Lecture 14 Activity

* You will be assigned to breakout rooms. Please:

* Introduce yourself

* Choose someone to share screen, showing this PDF
« Complete the following proof:

(Euclid’s Theorem): There are an infinite number of primes.

Proof: Suppose for the sake of contradiction that there are only a finite number of
primes and call the full list p, p,, ..., ;-

Define the number P = p,-p, - p3 -+ ppandlet Q =P + 1. (Note that Q > 1.)
e Case 1: Qs prime: ...

 Case 2: () is composite: ......

Both cases are contradictions, so the assumption is false.

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login
with your UW identity



http://pollev.com/thomas311

Famous Algorithmic Problems

* Primality Testing
— Given an integer n, determine if n is prime
* Factoring

— Given an integer n, determine the prime
factorization of n



Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413



12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514
19597459856902143413

e
——

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317
43087737814467999489

%
367460436667995904282446337996279526322791581643
430876426760322838157396665112792333734171433968
10270092798736308917



Greatest Common Divisor

GCD(a, b):
Largest integer d suchthatd |aand d | b

. GCD(100, 125)
. GCD(17, 49)
. GCD(11, 66)
. GCD(13, 0)

. GCD(180, 252)



GCD and Factoring

a=23%+352+7+11=46,200
b=2¢32+537+13=204,750

GCD(a, b) = 2min(3,1) ¢ 3min(1,2) ¢ FMin(2,3) ¢ 7min(1,1) ¢ 414 mMin(1,0) ¢ 4 3min(0,1)

Factoring is expensive!
Can we compute GCD(a,b) without factoring?



Useful GCD Fact

If a and b are positive integers, then
gcd(a,b) = ged(b, a % b)



Useful GCD Fact

If a and b are positive integers, then
gcd(a,b) = ged(b, a % b)

Proof:
By definition of %, a = gb + (a % b) for some integer ¢ = a div b.

Let d = gcd(a,b). Thend|aand d|bsoa = kd and b = jd
for some integers k and j.

Therefore (a% b) = a-qb = kd -qjd = (k-qj)d.
So, d|(a % b) and since d|b we must have d < gcd(b,a % b).



Useful GCD Fact

If a and b are positive integers, then
gcd(a,b) = ged(b, a % b)

Proof:
By definition of %, a = gb + (a % b) for some integer ¢ = a div b.

Let d = gcd(a,b). Thend|aand d|bsoa = kd and b = jd
for some integers k and j.

Therefore (a% b) = a-qb = kd -qjd = (k-qj)d.
So, d|(a % b) and since d|b we must have d < gcd(b,a % b).

Now, let e = gcd(b,a % b). Thene|bande |(a % b) so
b = me and (a % b) = ne for some integers m and n.

Therefore a = gb + (a % b) = gme + ne = (gm + n)e.
So, e|a and since e|b we must have e < gcd(a, b).

It follows that gcd(a, b) = gcd(b,a % b). _



Another simple GCD fact

If a is a positive integer, gcd(a,0) = a.



Euclid’'s Algorithm

gcd(a, b) = ged(b, a mod b), gcd(a,0)=a

int gcd(int a, int b){ /* a >= b, b >= 0 */

if (b == 0) {
return a;

}

else {

¥

return gcd(b, a % b);

Example: GCD(660, 126)




Euclid’'s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) =



Euclid’'s Algorithm

Repeatedly use gcd(a, b) = gcd(b,a % b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)
= gcd(30, 126 % 30) = gcd(30, 6)
= gcd(6, 30 % 6) = gcd(6, 0)
=6



Euclid’'s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

5cd(660,126) = gcd(126, 660 % 126) = ged(126, 30)

= gcd(30, 126 % 30) = gcd(30, 6)
= gcd(6, 30 % 6) = gcd(6, 0)
=6

In tableau form:

660 = 5 * 126 + 30
126=4* 30+ (6)
30=5* 6+ 0



Bézout’s theorem

If a and b are positive integers, then there exist
integers s and t such that
gcd(a,b) = sa + tb.



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 1 (Compute GCD & Keep Tableau Information):

a b b a modb-=r b r a=q*b +r
gcd(35,27) =gcd(27,35 mod 27) =gcd(27,8) |35=1*27+8




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 1 (Compute GCD & Keep Tableau Information):

a b b a modb-=r b r a=q*b +r
gcd(35,27) =gcd(27,35 mod 27) =gcd(27,8) |35=1*27+8

=gcd(8,27mod8) =gcd(8,3) [(27=3*8 +3
= gcd(3, 8 mod 3) = gcd(3, 2) 8 =2*3 +2
= gcd(2, 3 mod 2) =gcd(2, 1) 3=1*2 +1

=gcd(1,2 mod 1) =gcd(1, 0)



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 2 (Solve the equations for r):

a =q*b +r r=a-q*b
35=1*27+8 8=35-1%27
27=3*8 +3

8 =2*3 42

3 =1*2 +1

2 =2*1 +0



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 2 (Solve the equations for r):

a =qg*b +r r=a-qgqg*b
35=1%27+8 8=35-1*27
27=3*%8 +3 3=27-3*8
8 =2*3 +2 2=8 -2%*3
3 =1*%2 +1 1=3 - 1%*2

2 =2*1 +0



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):

8 =35-1%27)

\

2=8 -2
\
1=3 -1

1

Plug in the def of 2

3-1*(8-2%3)

3-8+2%*3
(-1)*8+3*3

Re-arrange into
3’'s and 8’s



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):
Plug in the def of 2

8 =35-1%27) 1= 3-1*%(8-2%3)
= 3-8+2*3 Re-arrange into
3 =27 -3 1@ =(_1)*8+3*3 3’s and 8’s
\ Plug in the def of 3
= (-1)*8+3*(27-3*8)

2=8 -2
\ =(-1)*8+4+3*27+(-9)*8
1=3 -1 = 3*27 4+ (-10) * 8 Re-arrange into

8’s and 27's

3%27 + (-10)* (35-1*27)
3%27 4 (-10) *35 + 10 * 27
13*27 + (-10) * 35

Re-arrange into
27’s and 35’s



Multiplicative inverse mod m

Suppose GCD(a,m) =1

By Bézout’'s Theorem, there exist integers s and ¢t
such that sa + tm = 1.

s % m is the multiplicative inverse of a:
l=(a+tm)%m=sa%m



Example

Solve: 7x = 1 (mod 26)



Example

Solve: 7x = 1 (mod 26)

gcd(26,7) = gcd(7,5) = gcd(5,2) = ged(2,1) =1

26=7%x3 4+ 5 5 = 26-7%3

7 =51+ 2 2 = 7- 5x1

5 =22+ 1 1 =5- 2x2
1 = 5 - 2*x(7-5%1)

(-7)*x2 + 3%5
(-7)*x2 4+ 3x(26- 7 *3)

(—11)*x7 4+ 3 %26
e Multiplicative inverse of 7 mod 26

Now (—11) mod 26 = 15. So,x = 15+ 26k fork € Z.



Example of a more general equation

Now solve: 7y = 3 (mod 26)

We already computed that 15 is the multiplicative
inverse of 7 modulo 26:

Thatis, 7 - 15 =1 (mod 26)

By the multiplicative property of mod we have
7+-15-3 = 3 (mod 26)

Soany y = 15 3 (mod 26) is a solution.

That is, y = 19 + 26k for any integer k is a solution.



gcd(a,m)=1ifmisprimeand 0 <a <m so
can always solve these equations mod a prime.

Math mod a prime is especially nice

mod 7



