CSE 311: Foundations of Computing

Lecture 14: More number theory & modular arithmetic

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$: $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$ Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

• Example: $-1 \equiv 9 \pmod{5}$

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$: $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$ Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

- Example: $-1 \equiv 9 \pmod{5}$
- Division Theorem. Any integer a, d with $d \ge 1$, can write uniquely $a = (a \operatorname{div} d) \cdot d + (a \% d)$ where $0 \le a \% d < d$.
- **Example:** -1 % 5 = 4, 9 % 4 = 1

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$: $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$ Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

- Example: $-1 \equiv 9 \pmod{5}$
- Division Theorem. Any integer a, d with $d \ge 1$, can write uniquely $a = (a \operatorname{div} d) \cdot d + (a \% d)$ where $0 \le a \% d < d$.

• Example:
$$-1\%5 = 4, 9\%4 = 1$$

Facts:

- $a \equiv b \pmod{m}$ iff a % m = b % m
- $(a \equiv b \pmod{m}) \land (b \equiv c \pmod{m}) \rightarrow a \equiv c \pmod{m}$
- $(a \equiv b \pmod{m}) \land (c \equiv d \pmod{m}) \rightarrow a + c \equiv b + d \pmod{m}$
- $(a \equiv b \pmod{m}) \land (c \equiv d \pmod{m}) \rightarrow ac \equiv bd \pmod{m}$

Let's start by looking a small example:

 $0^2 = 0 \equiv 0 \pmod{4}$ $1^2 = 1 \equiv 1 \pmod{4}$ $2^2 = 4 \equiv 0 \pmod{4}$ $3^2 = 9 \equiv 1 \pmod{4}$ $4^2 = 16 \equiv 0 \pmod{4}$

Case 1 (n is even):

Let's start by looking a small example:

 $0^{2} = 0 \equiv 0 \pmod{4}$ $1^{2} = 1 \equiv 1 \pmod{4}$ $2^{2} = 4 \equiv 0 \pmod{4}$ $3^{2} = 9 \equiv 1 \pmod{4}$ $4^{2} = 16 \equiv 0 \pmod{4}$

It looks like

n ≡ 0 (mod 2) \rightarrow n² ≡ 0 (mod 4), and n ≡ 1 (mod 2) \rightarrow n² ≡ 1 (mod 4).

Case 1 (*n* is even): Suppose *n* is even. Then, n = 2k for some integer *k*. So, $n^2 = (2k)^2 = 4k^2$. So, by definition of congruence, we have $n^2 \equiv 0 \pmod{4}$.

Let's start by looking a small example:

 $0^{2} = 0 \equiv 0 \pmod{4}$ $1^{2} = 1 \equiv 1 \pmod{4}$ $2^{2} = 4 \equiv 0 \pmod{4}$ $3^{2} = 9 \equiv 1 \pmod{4}$ $4^{2} = 16 \equiv 0 \pmod{4}$

It looks like

n ≡ 0 (mod 2) \rightarrow n² ≡ 0 (mod 4), and n ≡ 1 (mod 2) \rightarrow n² ≡ 1 (mod 4).

Case 1 (n is even): Done.

Case 2 (n is odd):

Let's start by looking a a small example:

 $0^2 = 0 \equiv 0 \pmod{4}$ $1^2 = 1 \equiv 1 \pmod{4}$ $2^2 = 4 \equiv 0 \pmod{4}$ $3^2 = 9 \equiv 1 \pmod{4}$ $4^2 = 16 \equiv 0 \pmod{4}$

It looks like

n ≡ 0 (mod 2) \rightarrow n² ≡ 0 (mod 4), and n ≡ 1 (mod 2) \rightarrow n² ≡ 1 (mod 4).

Let *n* be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$ Let's start by looking a a small example: Case 1 (*n* is even): Done. $0^2 = 0 \equiv 0 \pmod{4}$ $1^2 = 1 \equiv 1 \pmod{4}$ Case 2 (n is odd): $2^2 = 4 \equiv 0 \pmod{4}$ Suppose *n* is odd. $3^2 = 9 \equiv 1 \pmod{4}$ Then, n = 2k + 1 for some integer k. $4^2 = 16 \equiv 0 \pmod{4}$ So, $n^2 = (2k + 1)^2$ $=4k^{2}+4k+1$ It looks like $= 4(k^2 + k) + 1.$ $n \equiv 0 \pmod{2} \rightarrow n^2 \equiv 0 \pmod{4}$, and So, by the earlier property of mod, $n \equiv 1 \pmod{2} \rightarrow n^2 \equiv 1 \pmod{4}$. we have $n^2 \equiv 1 \pmod{4}$.

Result follows by "proof by cases": n is either even or not even (odd)

n-bit Unsigned Integer Representation

• Represent integer x as sum of powers of 2: If $\sum_{i=0}^{n-1} b_i 2^i$ where each $b_i \in \{0,1\}$ then representation is $b_{n-1}...b_2 b_1 b_0$

- For n = 8:
 - 99: 0110 0011
 - 18: 0001 0010

```
n-bit signed integers
Suppose that -2^{n-1} < x < 2^{n-1}
First bit as the sign, n-1 bits for the value
99 = 64 + 32 + 2 + 1
18 = 16 + 2
For n = 8:
 99: 0110 0011
 -18: 1001 0010
```

Any problems with this representation?

Two's Complement Representation

n bit signed integers, first bit will still be the sign bit

Suppose that $0 \le x < 2^{n-1}$, *x* is represented by the binary representation of *x* Suppose that $0 \le x \le 2^{n-1}$, -*x* is represented by the binary representation of $2^n - x$

Key property: Twos complement representation of any number y is equivalent to y, mod 2^n so arithmetic works mod 2^n

Sign-Magnitude vs. Two's Complement

	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
	1111	1110	1101	1100	1011	1010	1001	0000	0001	0010	0011	0100	0101	0110	0111
							Sign-b	it							
-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
1000	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110	0111
Two's complement															

Two's complement

Two's Complement Representation

- For $0 < x \le 2^{n-1}$, -x is represented by the binary representation of $2^n x$
 - That is, the two's complement representation of any number y has the same value as y modulo 2^n .

• To compute this: Flip the bits of x then add 1: - All 1's string is $2^n - 1$, so Flip the bits of $x \equiv$ replace x by $2^n - 1 - x$ Then add 1 to get $2^n - x$

Basic Applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher

Scenario:

Map a small number of data values from a large domain $\{0, 1, ..., M - 1\}$...

...into a small set of locations $\{0,1, ..., n-1\}$ so one can quickly check if some value is present

- hash(x) = x % p for p a prime close to n- or hash(x) = (ax + b)% p
- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur

Linear Congruential method

$$x_{n+1} = (ax_n + c) \% m$$

Choose random x_0 , a, c, m and produce a long sequence of x_n 's

- Caesar cipher, A = 1, B = 2, ...- HELLO WORLD
- Shift cipher
 - -f(p) = (p + k) % 26 $-f^{-1}(p) = (p - k) \% 26$
- More general

-f(p) = (ap + b) % 26

Primality

An integer *p* greater than 1 is called *prime* if the only positive factors of *p* are 1 and *p*.

A positive integer that is greater than 1 and is not prime is called *composite*.

Every positive integer greater than 1 has a unique prime factorization

48 = 2 • 2 • 2 • 2 • 3 591 = 3 • 197 45,523 = 45,523 321,950 = 2 • 5 • 5 • 47 • 137 1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803

Lecture 14 Activity

- You will be assigned to **breakout rooms**. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF
- Complete the following proof:

(Euclid's Theorem): There are an infinite number of primes.

Proof: Suppose for the sake of contradiction that there are only a finite number of primes and call the full list $p_1, p_2, ..., p_n$.

Define the number $P = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n$ and let Q = P + 1. (Note that Q > 1.)

- Case 1: *Q* is prime:
- Case 2: *Q* is composite:

Both cases are contradictions, so the assumption is false.

Fill out a poll everywhere for Activity Credit! Go to pollev.com/thomas311 and login with your UW identity

Famous Algorithmic Problems

- Primality Testing
 - Given an integer n, determine if n is prime
- Factoring
 - Given an integer *n*, determine the prime factorization of *n*

Factor the following 232 digit number [RSA768]:

 GCD(a, b):

Largest integer d such that $d \mid a$ and $d \mid b$

- GCD(100, 125) =
- GCD(17, 49) =
- GCD(11, 66) =
- GCD(13, 0) =
- GCD(180, 252) =

GCD and Factoring

 $a = 2^3 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11 = 46,200$

$$b = 2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 13 = 204,750$$

 $GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)}$

Factoring is expensive! Can we compute GCD(a,b) without factoring?

If *a* and *b* are positive integers, then gcd(*a*,*b*) = gcd(*b*, *a* % *b*)

If *a* and *b* are positive integers, then gcd(*a*,*b*) = gcd(*b*, *a* % *b*)

Proof:

By definition of %, a = qb + (a % b) for some integer $q = a \operatorname{div} b$.

Let d = gcd(a, b). Then d|a and d|b so a = kd and b = jdfor some integers k and j.

Therefore (a % b) = a - qb = kd - qjd = (k - qj)d. So, d|(a % b) and since d|b we must have $d \le \operatorname{gcd}(b, a \% b)$.

If *a* and *b* are positive integers, then gcd(*a*,*b*) = gcd(*b*, *a* % *b*)

Proof:

By definition of %, a = qb + (a % b) for some integer $q = a \operatorname{div} b$.

Let d = gcd(a, b). Then d|a and d|b so a = kd and b = jdfor some integers k and j.

Therefore (a % b) = a - qb = kd - qjd = (k - qj)d. So, d|(a % b) and since d|b we must have $d \le \operatorname{gcd}(b, a \% b)$.

Now, let $e = \operatorname{gcd}(b, a \% b)$. Then $e \mid b$ and $e \mid (a \% b)$ so b = me and (a % b) = ne for some integers m and n.

Therefore a = qb + (a % b) = qme + ne = (qm + n)e. So, e | a and since e | b we must have $e \le gcd(a, b)$.

It follows that gcd(a, b) = gcd(b, a % b).

Another simple GCD fact

If a is a positive integer, gcd(a,0) = a.

```
gcd(a, b) = gcd(b, a mod b), gcd(a,0)=a
```

```
int gcd(int a, int b){ /* a >= b, b >= 0 */
    if (b == 0) {
        return a;
    }
    else {
        return gcd(b, a % b);
    }
```

Example: GCD(660, 126)

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

gcd(660,126) =

Repeatedly use gcd(a, b) = gcd(b, a % b) to reduce numbers until you get gcd(g, 0) = g.

```
gcd(660,126) = gcd(126, 660 \% 126) = gcd(126, 30)
= gcd(30, 126 % 30) = gcd(30, 6)
= gcd(6, 30 % 6) = gcd(6, 0)
= 6
```

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

$$gcd(660,126) = gcd(126, 660 \% 126) = gcd(126, 30)$$

= gcd(30, 126 % 30) = gcd(30, 6)
= gcd(6, 30 % 6) = gcd(6, 0)
= 6

In tableau form:

$$660 = 5 * 126 + 30$$

$$126 = 4 * 30 + 6$$

$$30 = 5 * 6 + 0$$

If *a* and *b* are positive integers, then there exist integers *s* and *t* such that gcd(a,b) = sa + tb.

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 1 (Compute GCD & Keep Tableau Information):

abamodbra= q * b + rgcd(35, 27) = gcd(27, 35 mod 27) = gcd(27, 8)gcd(27, 8)35 = 1 * 27 + 8

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 1 (Compute GCD & Keep Tableau Information):

a bb a mod b = rb ra = q * b + r $gcd(35, 27) = gcd(27, 35 \mod 27) = gcd(27, 8)$ $= gcd(27, 35 \mod 27) = gcd(27, 8)$ 35 = 1 * 27 + 8 $= gcd(8, 27 \mod 8)$ = gcd(8, 3)= gcd(8, 3)27 = 3 * 8 + 3 $= gcd(3, 8 \mod 3)$ = gcd(3, 2)8 = 2 * 3 + 2 $= gcd(2, 3 \mod 2)$ = gcd(2, 1)3 = 1 * 2 + 1 $= gcd(1, 2 \mod 1)$ = gcd(1, 0)

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 2 (Solve the equations for r):

a =
$$q * b + r$$

 $35 = 1 * 27 + 8$
 $27 = 3 * 8 + 3$
 $8 = 2 * 3 + 2$
 $3 = 1 * 2 + 1$
 $2 = 2 * 1 + 0$

r = a - q * b8 = 35 - 1 * 27

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 2 (Solve the equations for r):

a = q * b + r 35 = 1 * 27 + 8 27 = 3 * 8 + 3 8 = 2 * 3 + 2 3 = 1 * 2 + 12 = 2 * 1 + 0

r = a - q * b 8 = 35 - 1 * 27 3 = 27 - 3 * 8 2 = 8 - 2 * 31 = 3 - 1 * 2

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):

Plug in the def of 2

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):

Plug in the def of 2

8 = 35 - 1 * = 3 - 1 * (8 - 2 * 3)= 3 - 8 + 2 * 3**Re-arrange into** = (-1) * 8 + 3 * 33's and 8's 3 = 27 - 3Plug in the def of 3 = (-1) * 8 + 3 * (27 - 3 * 8)2 = 8= (-1) * 8 + 3 * 27 + (-9) * 8= 3 * 27 + (-10) * 8 Re-arrange into 1 = 38's and 27's = 3 * 27 + (-10) * (35 - 1 * 27)= 3 * 27 + (-10) * 35 + 10 * 27**Re-arrange into** = 13 * 27 + (-10) * 3527's and 35's

Suppose GCD(a, m) = 1

By Bézout's Theorem, there exist integers *s* and *t* such that sa + tm = 1.

s % m is the multiplicative inverse of a:

1 = (sa + tm) % m = sa % m

Solve: $7x \equiv 1 \pmod{26}$

Solve: $7x \equiv 1 \pmod{26}$

gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

$$26 = 7 * 3 + 5$$
 $5 = 26 - 7 * 3$ $7 = 5 * 1 + 2$ $2 = 7 - 5 * 1$ $5 = 2 * 2 + 1$ $1 = 5 - 2 * 2$

1 = 5 - 2 * (7 - 5 * 1)= (-7) * 2 + 3 * 5 = (-7) * 2 + 3 * (26 - 7 * 3) = (-11) * 7 + 3 * 26 Now (-11) mod 26 = 15. So, x = 15 + 26k for $k \in \mathbb{Z}$. Now solve: $7y \equiv 3 \pmod{26}$

We already computed that 15 is the multiplicative inverse of 7 modulo 26:

That is, $7 \cdot 15 \equiv 1 \pmod{26}$

By the multiplicative property of mod we have

 $7 \cdot 15 \cdot 3 \equiv 3 \pmod{26}$

So any $y \equiv 15 \cdot 3 \pmod{26}$ is a solution.

That is, y = 19 + 26k for any integer k is a solution.

gcd(a, m) = 1 if *m* is prime and 0 < a < m so can always solve these equations mod a prime.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1