CSE 311: Foundations of Computing

Lecture 14: More number theory \& modular arithmetic

Recap from last lecture

Definition: "a divides $\mathbf{b}^{\prime \prime}$
For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:
$a \mid b \leftrightarrow \exists k \in \mathbb{Z}(b=k a)$

$$
\begin{array}{|l|}
\hline \text { Definition: " } \mathbf{a} \text { is congruent to } \mathbf{b} \text { modulo } \mathbf{~ m " ~} \\
\hline \text { For } a, b, m \in \mathbb{Z} \text { with } m>0 \\
\quad a \equiv b(\bmod m) \leftrightarrow m \mid(a-b) \\
\hline
\end{array}
$$

- Example: $-1 \equiv 9(\bmod 5)$

Recap from last lecture

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$: $a \mid b \leftrightarrow \exists k \in \mathbb{Z}(b=k a)$

Definition: "a is congruent to b modulo m"
For $a, b, m \in \mathbb{Z}$ with $m>0$
$a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)$

- Example: $-1 \equiv 9(\bmod 5)$
- Division Theorem. Any integer a, d with $d \geq 1$, can write uniquely $a=(a \operatorname{div} d) \cdot d+(a \% d)$ where $0 \leq a \% d<d$.
- Example: $-1 \% 5=4,9 \% 4=1$

Recap from last lecture

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$: $a \mid b \leftrightarrow \exists k \in \mathbb{Z}(b=k a)$

$$
\begin{array}{|l|}
\hline \text { Definition: "a is congruent to } \mathbf{b} \text { modulo } \mathbf{~ m " ~} \\
\hline \text { For } a, b, m \in \mathbb{Z} \text { with } m>0 \\
a \equiv b(\bmod m) \leftrightarrow m \mid(a-b) \\
\hline
\end{array}
$$

- Example: $-1 \equiv 9(\bmod 5)$
- Division Theorem. Any integer a, d with $d \geq 1$, can write uniquely $a=(a \operatorname{div} d) \cdot d+(a \% d)$ where $0 \leq a \% d<d$.
- Example: $-1 \% 5=4,9 \% 4=1$

Facts:

- $a \equiv b(\bmod m)$ iff $a \% m=b \% m$
- $(a \equiv b(\bmod m)) \wedge(b \equiv c(\bmod m)) \rightarrow a \equiv c(\bmod m)$
- $(a \equiv b(\bmod m)) \wedge(c \equiv d(\bmod m)) \rightarrow a+c \equiv b+d(\bmod m)$
- $(a \equiv b(\bmod m)) \wedge(c \equiv d(\bmod m)) \rightarrow a c \equiv b d(\bmod m)$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$
Let's start by looking a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv \mathbf{0}(\bmod 4)$ or $\boldsymbol{n}^{2} \equiv \mathbf{1}(\bmod 4)$
Case 1 (n is even):
Let's start by looking a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

It looks like

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and } \\
& n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4) .
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv 0(\bmod 4)$ or $\boldsymbol{n}^{2} \equiv 1(\bmod 4)$
Case 1 (n is even):
Suppose n is even.
Then, $n=2 k$ for some integer k.
Let's start by looking a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4)
\end{aligned}
$$

So, $n^{2}=(2 k)^{2}=4 k^{2}$.
So, by definition of congruence, we have $n^{2} \equiv 0(\bmod 4)$.

It looks like

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and } \\
& n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4) .
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv \mathbf{0}(\bmod 4)$ or $\boldsymbol{n}^{2} \equiv \mathbf{1}(\bmod 4)$

Case 1 (n is even): Done.
Case 2 (n is odd):

Let's start by looking a a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

It looks like

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and } \\
& n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4) .
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer.
Prove that $\boldsymbol{n}^{2} \equiv 0(\bmod 4)$ or $\boldsymbol{n}^{2} \equiv 1(\bmod 4)$
Case 1 (n is even): Done.
Let's start by looking a a small example:

$$
\begin{aligned}
& 0^{2}=0 \equiv 0(\bmod 4) \\
& 1^{2}=1 \equiv 1(\bmod 4) \\
& 2^{2}=4 \equiv 0(\bmod 4) \\
& 3^{2}=9 \equiv 1(\bmod 4) \\
& 4^{2}=16 \equiv 0(\bmod 4)
\end{aligned}
$$

It looks like

$$
n \equiv 0(\bmod 2) \rightarrow n^{2} \equiv 0(\bmod 4), \text { and }
$$

So, by the earlier property of mod, $n \equiv 1(\bmod 2) \rightarrow n^{2} \equiv 1(\bmod 4)$. we have $n^{2} \equiv 1(\bmod 4)$.

Result follows by "proof by cases": n is either even or not even (odd)

n-bit Unsigned Integer Representation

- Represent integer x as sum of powers of 2 :

If $\sum_{i=0}^{n-1} b_{i} 2^{i}$ where each $b_{i} \in\{0,1\}$
then representation is $b_{n-1} \ldots b_{2} b_{1} b_{0}$
$99=64+32+2+1$
$18=16+2$

- For $\mathrm{n}=8$:

99: 01100011
18: 00010010

Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that $-2^{n-1}<x<2^{n-1}$
First bit as the sign, $n-1$ bits for the value
$99=64+32+2+1$
$18=16+2$
For $\mathrm{n}=8$:
99: 01100011
-18: 10010010
Any problems with this representation?

Two's Complement Representation

n bit signed integers, first bit will still be the sign bit
Suppose that $0 \leq x<2^{n-1}$
x is represented by the binary representation of x
Suppose that $0 \leq x \leq 2^{n-1}$
$-x$ is represented by the binary representation of $2^{n}-x$
Key property: Twos complement representation of any number \boldsymbol{y} is equivalent to $y, \bmod 2^{n}$ so arithmetic works $\bmod 2^{\boldsymbol{n}}$

$$
\begin{aligned}
& 99=64+32+2+1 \\
& 18=16+2
\end{aligned}
$$

For $\mathrm{n}=8$:
99: 01100011
-18: 11101110

Sign-Magnitude vs. Two's Complement

| -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1111 | 1110 | 1101 | 1100 | 1011 | 1010 | 1001 | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |

-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
1000	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110	0111

Two's complement

Two's Complement Representation

- For $0<x \leq 2^{n-1},-x$ is represented by the binary representation of $2^{n}-x$
- That is, the two's complement representation of any number y has the same value as y modulo 2^{n}.
- To compute this: Flip the bits of x then add 1 :
- All 1's string is $2^{n}-1$, so

Flip the bits of $x \equiv$ replace x by $2^{n}-1-x$
Then add 1 to get $2^{n}-x$

Basic Applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher

Hashing

Scenario:
Map a small number of data values from a large domain $\{0,1, \ldots, M-1\} \ldots$...into a small set of locations $\{0,1, \ldots, n-1\}$ so one can quickly check if some value is present

- $\operatorname{hash}(x)=x \% p$ for p a prime close to n
- or hash $(x)=(a x+b) \% p$
- Depends on all of the bits of the data
- helps avoid collisions due to similar values
- need to manage them if they occur

Pseudo-Random Number Generation

Linear Congruential method

$$
x_{n+1}=\left(a x_{n}+c\right) \% m
$$

Choose random x_{0}, a, c, m and produce a long sequence of x_{n} 's

Simple Ciphers

- Caesar cipher, $\mathrm{A}=1, \mathrm{~B}=2, \ldots$
- HELLO WORLD
- Shift cipher

$$
\begin{aligned}
& -f(p)=(p+k) \% 26 \\
& -f^{1}(p)=(p-k) \% 26
\end{aligned}
$$

- More general

$$
-f(p)=(a p+b) \% 26
$$

Primality

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is called composite.

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a unique prime factorization

$$
\begin{aligned}
& 48=2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \\
& 591=3 \cdot 197 \\
& 45,523=45,523 \\
& 321,950=2 \cdot 5 \cdot 5 \cdot 47 \cdot 137 \\
& 1,234,567,890=2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803
\end{aligned}
$$

Lecture 14 Activity

- You will be assigned to breakout rooms. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF
- Complete the following proof:
(Euclid's Theorem): There are an infinite number of primes.
Proof: Suppose for the sake of contradiction that there are only a finite number of primes and call the full list $p_{1}, p_{2}, \ldots, p_{n}$.
Define the number $P=p_{1} \cdot p_{2} \cdot p_{3} \cdot \cdots \cdot p_{n}$ and let $Q=P+1$. (Note that $Q>1$.)
- Case 1: Q is prime:
- Case 2: Q is composite:

Both cases are contradictions, so the assumption is false.

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login with your UW identity

Famous Algorithmic Problems

- Primality Testing
- Given an integer n, determine if n is prime
- Factoring
- Given an integer n, determine the prime factorization of n

Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077 285356959533479219732245215172640050726 365751874520219978646938995647494277406 384592519255732630345373154826850791702 612214291346167042921431160222124047927 4737794080665351419597459856902143413

12301866845301177551304949583849627207728535695953347 92197322452151726400507263657518745202199786469389956 47494277406384592519255732630345373154826850791702612 21429134616704292143116022212404792747377940806653514 19597459856902143413

334780716989568987860441698482126908177047949837 137685689124313889828837938780022876147116525317 43087737814467999489

367460436667995904282446337996279526322791581643 430876426760322838157396665112792333734171433968 10270092798736308917

Greatest Common Divisor

GCD (a, b) :
Largest integer d such that $d \mid a$ and $d \mid b$

- $\operatorname{GCD}(100,125)=$
- $\operatorname{GCD}(17,49)=$
- $\operatorname{GCD}(11,66)=$
- $\operatorname{GCD}(13,0)=$
- GCD $(180,252)=$

GCD and Factoring

$$
\begin{aligned}
& a=2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11=46,200 \\
& b=2 \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 13=204,750
\end{aligned}
$$

$\operatorname{GCD}(\mathrm{a}, \mathrm{b})=2^{\min (3,1)} \cdot 3^{\min (1,2)} \cdot 5^{\min (2,3)} \cdot 7^{\min (1,1)} \cdot 11_{\min (1,0)} \cdot 13^{\min (0,1)}$

Factoring is expensive!
Can we compute GCD(a,b) without factoring?

Useful GCD Fact

If a and b are positive integers, then

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)
$$

Useful GCD Fact

If a and b are positive integers, then

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)
$$

Proof:

By definition of \%, $a=q b+(a \% b)$ for some integer $q=a \operatorname{div} b$.
Let $d=\operatorname{gcd}(a, b)$. Then $d \mid a$ and $d \mid b$ so $a=k d$ and $b=j d$ for some integers k and j.

Therefore $(a \% b)=a-q b=k d-q j d=(k-q j) d$.
So, $d \mid(a \% b)$ and since $d \mid b$ we must have $d \leq \operatorname{gcd}(b, a \% b)$.

Useful GCD Fact

If a and b are positive integers, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$

Proof:

By definition of $\%, a=q b+(a \% b)$ for some integer $q=a \operatorname{div} b$.
Let $d=\operatorname{gcd}(a, b)$. Then $d \mid a$ and $d \mid b$ so $a=k d$ and $b=j d$ for some integers k and j.

Therefore $(a \% b)=a-q b=k d-q j d=(k-q j) d$.
So, $d \mid(a \% b)$ and since $d \mid b$ we must have $d \leq \operatorname{gcd}(b, a \% b)$.
Now, let $e=\operatorname{gcd}(b, a \% b)$. Then $e \mid b$ and $e \mid(a \% b)$ so
$b=m e$ and $(a \% b)=n e$ for some integers m and n.
Therefore $a=q b+(a \% b)=q m e+n e=(q m+n) e$.
So, $e \mid a$ and since $e \mid b$ we must have $e \leq \operatorname{gcd}(a, b)$.
It follows that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$.

Another simple GCD fact

If a is a positive integer, $\operatorname{gcd}(a, 0)=a$.

Euclid's Algorithm

$\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{a} \bmod \mathrm{b}), \operatorname{gcd}(\mathrm{a}, 0)=\mathrm{a}$

```
int gcd(int a, int b){ /* a >= b, b >= 0 */
```

```
if (b == 0) {
    return a;
}
else {
    return gcd(b, a % b);
}
```


Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.
$\operatorname{gcd}(660,126)=$

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.

$$
\begin{aligned}
\operatorname{gcd}(660,126) & =\operatorname{gcd}(126,660 \% 126)=\operatorname{gcd}(126,30) \\
& =\operatorname{gcd}(30,126 \% 30) \\
& =\operatorname{gcd}(6,30 \% 6) \\
& =6
\end{aligned}
$$

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.

$$
\begin{aligned}
\operatorname{gcd}(660,126) & =\operatorname{gcd}(126,660 \% 126)=\operatorname{gcd}(126,30) \\
& =\operatorname{gcd}(30,126 \% 30) \\
& =\operatorname{gcd}(6,30 \% 6) \\
& =6
\end{aligned}
$$

In tableau form:

$$
\begin{aligned}
660 & =5^{*} 126+30 \\
126 & =4^{*} 30+6 \\
30 & =5 * 6+0
\end{aligned}
$$

Bézout's theorem

If a and b are positive integers, then there exist integers \boldsymbol{s} and \boldsymbol{t} such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 1 (Compute GCD \& Keep Tableau Information):

$$
\begin{array}{cccc}
a \quad b & b \quad a \bmod b=r & b & r \\
\operatorname{gcd}(35,27) & =\operatorname{gcd}(27,35 \bmod 27) & =\operatorname{gcd}(27,8) & \left.\begin{array}{c}
a \\
35
\end{array}\right)=1 * 27+8
\end{array}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 1 (Compute GCD \& Keep Tableau Information):

$$
=\operatorname{gcd}(1,2 \bmod 1) \quad=\operatorname{gcd}(1,0)
$$

$$
\begin{aligned}
& \begin{array}{cccc}
a \quad b & b \quad a \bmod b=r & b \quad r \\
\operatorname{gcd}(35,27) & =\operatorname{gcd}(27,35 \bmod 27) & =\operatorname{gcd}(27,8)
\end{array} \\
& a=q * b+r \\
& 35=1 * 27+8 \\
& =\operatorname{gcd}(8,27 \bmod 8) \quad=\operatorname{gcd}(8,3) \\
& =\operatorname{gcd}(3,8 \bmod 3) \quad=\operatorname{gcd}(3,2) \\
& =\operatorname{gcd}(2,3 \bmod 2) \quad=\operatorname{gcd}(2,1)
\end{aligned}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 2 (Solve the equations for r):

$$
\begin{array}{ll}
a=q * b+r & r=a-q * b \\
35=1 * 27+8 & 8=35-1 * 27 \\
27=3 * 8+3 & \\
8=2 * 3+2 & \\
3=1 * 2+1 & \\
2=2 * 1+0 &
\end{array}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 2 (Solve the equations for r):

$$
\begin{array}{ll}
a=q * b+r & r=a-q * b \\
35=1 * 27+8 & 8=35-1 * 27 \\
27=3 * 8+3 & 3=27-3 * 8 \\
8=2 * 3+2 & 2=8-2 * 3 \\
3=1 * 2+1 & 1=3-1 * 2 \\
2=2 * 1+0 &
\end{array}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Plug in the def of 2

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Plug in the def of 2

Multiplicative inverse $\bmod m$

Suppose $\operatorname{GCD}(a, m)=1$

By Bézout's Theorem, there exist integers s and t such that $s a+t m=1$.
$s \% m$ is the multiplicative inverse of a :

$$
1=(s a+t m) \% m=s a \% m
$$

Example

Solve: $7 x \equiv 1(\bmod 26)$

Example

Solve: $7 x \equiv 1(\bmod 26)$

$$
\begin{aligned}
& \operatorname{gcd}(26,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1 \\
& 26=7 * 3+5 \quad 5=26-7 * 3 \\
& 7=5 * 1+2 \quad 2=7-5 * 1 \\
& 5=2 * 2+1 \quad 1=5-2 * 2 \\
& 1=5-2 *(7-5 * 1) \\
& =(-7) * 2+3 * 5 \\
& \\
& =(-7) * 2+3 *(26-7 * 3) \\
& \\
& =(-11) * 7+3 * 26
\end{aligned}
$$

Multiplicative inverse of 7 mod 26
Now $(-11) \bmod 26=15$. So, $x=15+26 k$ for $k \in \mathbb{Z}$.

Example of a more general equation

Now solve: $7 y \equiv 3(\bmod 26)$

We already computed that 15 is the multiplicative inverse of 7 modulo 26 :

That is, $7 \cdot 15 \equiv 1(\bmod 26)$
By the multiplicative property of mod we have

$$
7 \cdot 15 \cdot 3 \equiv 3(\bmod 26)
$$

So any $y \equiv 15 \cdot 3(\bmod 26)$ is a solution.
That is, $y=19+26 k$ for any integer k is a solution.

Math mod a prime is especially nice

$\operatorname{gcd}(a, m)=1$ if m is prime and $0<a<m$ so can always solve these equations mod a prime.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

$\bmod 7$

