CSE 311: Foundations of Computing

Lecture 15: The Euclidean algorithm and applications

Recap from last lecture

- An integer $p>2$ is prime if the only positive factors are 1 and p
- A prime factorization for an integer $n>1$ is of the form $n=p_{1} \cdot \ldots \cdot p_{k}$ where p_{1}, \ldots, p_{k} are prime numbers.
- Each integer $n>1$ as a unique prime factorization.
- The greatest common divisor $\operatorname{gcd}(a, b)$ is the largest integer d with $d \mid a$ and $d \mid b$.
- Important fact for today: $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$

Another simple GCD fact

If a is a positive integer, $\operatorname{gcd}(a, 0)=a$.

Euclid's Algorithm

$\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{a} \bmod \mathrm{b}), \operatorname{gcd}(\mathrm{a}, 0)=\mathrm{a}$

int gcd(int a, int b)\{ /* a >= b, b >= 0 */

```
if (b == 0) {
    return a;
    }
else {
        return gcd(b, a % b);
    }
```


Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.
$\operatorname{gcd}(660,126)=$

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.

$$
\begin{aligned}
\operatorname{gcd}(660,126) & =\operatorname{gcd}(126,660 \% 126)=\operatorname{gcd}(126,30) \\
& =\operatorname{gcd}(30,126 \% 30) \\
& =\operatorname{gcd}(6,30 \% 6) \\
& =6
\end{aligned}
$$

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.

$$
\begin{aligned}
\operatorname{gcd}(660,126) & =\operatorname{gcd}(126,660 \% 126)=\operatorname{gcd}(126,30) \\
& =\operatorname{gcd}(30,126 \% 30) \\
& =\operatorname{gcd}(6,30 \% 6) \\
& =6
\end{aligned}
$$

In tableau form:

$$
\begin{aligned}
660 & =5^{*} 126+30 \\
126 & =4^{*} 30+6 \\
30 & =5^{*} \quad 6+0
\end{aligned}
$$

Bézout's theorem

If a and b are positive integers, then there exist integers \boldsymbol{s} and \boldsymbol{t} such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Proof is algorithmic: via the Extended Euclidean algorithm

Extended Euclidean algorithm

- Method: $\operatorname{extGCD}(a, b) \rightarrow(g, s, t)$
- Input: Integers $a \geq b \geq 0$
- Output: Integers g, s, t s.t. $g=\operatorname{gcd}(a, b)=s \cdot a+t \cdot b$

1. IF $b==0$ THEN return $(a, 1,0) / / a=\operatorname{gcd}(a, 0)=1 \cdot a+0 \cdot 0$
2. $(g, s, t):=\operatorname{extGCD}(b, a \% b)$
3. Write $a=q b+(a \% b)$ with $q \in \mathbb{Z}$
4. Return $(g, t, s-t q)$

$$
\begin{aligned}
& / / g=\operatorname{gcd}(b, a \% b)=\operatorname{gcd}(a, b) \\
& / / g=s \cdot b+t \cdot(a \% b) \\
& / /=s \cdot b+t \cdot(a-q b) \\
& / /=t \cdot a+(s-t q) \cdot b
\end{aligned}
$$

Extended Euclidean algorithm

- Example: Find s, t such that $\operatorname{gcd}(31,16)=s \cdot 31+t \cdot 16$

Extended Euclidean algorithm

- Example: Find s, t such that $\operatorname{gcd}(31,16)=s \cdot 31+t \cdot 16$
$\operatorname{extGCD}(31,16)$-> extGCD(16, $31 \% 16)$

Extended Euclidean algorithm

- Example: Find s, t such that $\operatorname{gcd}(31,16)=s \cdot 31+t \cdot 16$

$$
\begin{aligned}
& \text { extGCD(31, 16) -> extGCD(16, } 31 \% 16) \\
& \text { extGCD(16, 15) -> extGCD(15, } 16 \% 15)
\end{aligned}
$$

Extended Euclidean algorithm

- Example: Find s, t such that $\operatorname{gcd}(31,16)=s \cdot 31+t \cdot 16$

$$
\begin{aligned}
& \text { extGCD(31, 16) -> extGCD(16, } 31 \% 16) \\
& \text { extGCD(16, 15) -> extGCD(15, 16 \% 15) } \\
& \text { extGCD(15, 1) -> extGCD(1, } 15 \% 1)
\end{aligned}
$$

Extended Euclidean algorithm

- Example: Find s, t such that $\operatorname{gcd}(31,16)=s \cdot 31+t \cdot 16$

```
\(\operatorname{extGCD}(31,16)\)-> extGCD(16, 31 \% 16)
    extGCD \((16,15)\)-> extGCD \((15,16 \% 15)\)
        \(\operatorname{extGCD}(15,1)\)-> extGCD \((1,15 \% 1)\)
        \(\operatorname{extGCD}(1,0)=1=1 * 1+0 * 0\)
```

Hence $\operatorname{gcd}(31,16)=1$

Extended Euclidean algorithm

- Example: Find s, t such that $\operatorname{gcd}(31,16)=s \cdot 31+t \cdot 16$

```
extGCD(31, 16) -> extGCD(16, 31 % 16)
    extGCD(16, 15) -> extGCD(15, 16 % 15)
        extGCD(15, 1) -> extGCD(1, 15 % 1)
        extGCD}(1,0)=1=1*1 + 0*
    15=15*1+0qq s t 
    1=0*15+(1-0*15)*1 = 0*15 + 1*1
```

Hence $\operatorname{gcd}(31,16)=1$

Extended Euclidean algorithm

- Example: Find s, t such that $\operatorname{gcd}(31,16)=s \cdot 31+t \cdot 16$

```
extGCD(31, 16) -> extGCD(16, 31 % 16)
    extGCD(16, 15) -> extGCD(15, 16 % 15)
        extGCD(15, 1) -> extGCD(1, 15 % 1)
        extGCD}(1,0)=1=1*1 + 0*
    15=15*1+0q
    1=0*15+(1-0*15)*1 = 0*15+1*1
    16=1*15+1
    1=1*16+(0-1*1)*15 = 1*16 +-1*15
```

Hence $\operatorname{gcd}(31,16)=1$

Extended Euclidean algorithm

- Example: Find s, t such that $\operatorname{gcd}(31,16)=s \cdot 31+t \cdot 16$

```
extGCD(31, 16) -> extGCD(16, 31 % 16)
    extGCD(16, 15) -> extGCD(15, 16 % 15)
        extGCD(15, 1) -> extGCD(1, 15 % 1)
            extGCD}(1,0)=1=1*1 + 0*
        15=15*1+0qs
        1=0*15+(1-0*15)*1 = 0*15+1*1
    16=1*15+1
    1=1*16+(0-1*1)*15 = 1*16+-1*15
31=1*16 + 15
1=-1*31+(1--1*1)*16 = -1*31+2*16
```

Hence $\operatorname{gcd}(31,16)=1=(-1) \cdot 31+2 \cdot 16$

Extended Euclidean algorithm

- Example: Find s, t such that $\operatorname{gcd}(31,16)=s \cdot 31+t \cdot 16$

```
\(\operatorname{extGCD}(31,16)\)-> extGCD(16, 31 \% 16)
    extGCD \((16,15)\)-> extGCD \((15,16 \% 15)\)
        \(\operatorname{extGCD}(15,1)\)-> extGCD(1, \(15 \% 1)\)
        \(\operatorname{extGCD}(1,0)=1=1 * 1+0 * 0\)
        \(15=15 * 1+0\)
        \(1=0 * 15+(1-0 * 15) * 1=0 * 15+1 * 1\)
    16=1*15 + 1
    \(1=1^{*} 16+(0-1 * 1)^{*} 15=1 * 16+-1 * 15\)
31=1*16 + 15
\(1=-1^{*} 31+\left(1-1^{*} 1\right)^{*} 16=-1 * 31+2 * 16\)
```

Hence $\operatorname{gcd}(31,16)=1=(-1) \cdot 31+2 \cdot 16$

Multiplicative inverse $\bmod m$

Suppose $\operatorname{GCD}(a, m)=1$

By Bézout's Theorem, there exist integers s and t such that $s a+t m=1$.
$s \% m$ is the multiplicative inverse of a :

$$
1=(s a+t m) \% m=s a \% m
$$

Example

Solve: $7 x \equiv 1(\bmod 26)$

Example

Solve: $7 x \equiv 1(\bmod 26)$

$$
\begin{aligned}
& \operatorname{gcd}(26,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1 \\
& \qquad \begin{array}{l}
26=7 * 3+5 \quad 5=26-7 * 3 \\
7=5 * 1+2 \quad 2=7-5 * 1 \\
5
\end{array} \\
& \begin{array}{l}
5 * 2+1 \quad 1=5-2 * 2 \\
1
\end{array} \\
& =(-7) * 2+3 *(7-5 * 1) \\
& =(-7) * 2+3 *(26-7 * 3) \\
& \\
& =(-11) * 7+3 * 26
\end{aligned}
$$

Multiplicative inverse of 7 mod 26
Now $(-11) \mathrm{med} 26=15$. So, $x=15+26 k$ for $k \in \mathbb{Z}$.

Example of a more general equation

Now solve: $7 y \equiv 3(\bmod 26)$

We already computed that 15 is the multiplicative inverse of 7 modulo 26 :

That is, $7 \cdot 15 \equiv 1(\bmod 26)$
By the multiplicative property of mod we have

$$
7 \cdot 15 \cdot 3 \equiv 3(\bmod 26)
$$

So any $y \equiv 15 \cdot 3(\bmod 26)$ is a solution.
That is, $y=19+26 k$ for any integer k is a solution.

Lecture 15 Activity

You will be assigned to breakout rooms. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Discuss the following questions:

1. If you run the extended Euclidean algorithm for $(51,23)$ it will return that $\operatorname{gcd}(51,23)=1=(-9) \cdot 51+20 \cdot 23$.
What is this telling you about the multiplicative inverse of 51 modulo 23.
2. If you run the extended Euclidean algorithm for $(51,24)$ it will return that $\operatorname{gcd}(51,24)=3=1 \cdot 51+(-2) \cdot 24$.
What is this telling you about the multiplicative inverse of 51 modulo 24.
3. What is the set of integers that do not have a multiplicative inverse modulo 10 ?

Fill out the poll everywhere for Activity Credit!
Go to pollev.com/philipmg and login with your UW identity

Lecture 15 Activity

1. If you run the extended Euclidean algorithm for $(51,23)$ it will return that $\operatorname{gcd}(51,23)=1=(-9) \cdot 51+20 \cdot 23$.
What is this telling you about the multiplicative inverse of 51 modulo 23.
Solution: $-9+23=14$
2. If you run the extended Euclidean algorithm for $(51,24)$ it will return that $\operatorname{gcd}(51,24)=3=1 \cdot 51+(-2) \cdot 24$. What is this telling you about the multiplicative inverse of 51 modulo 24.
Solution: There is none.
3. What is the set of integers that do not have a multiplicative inverse modulo 10 ?
Solution: $0+10 x, 2+20 x, 5+10 x, x \in \mathbb{Z}$

Fill out the poll everywhere for Activity Credit!
Go to pollev.com/philipmg and login with your UW identity

Math mod a prime is especially nice

$\operatorname{gcd}(a, m)=1$ if m is prime and $0<a<m$ so can always solve these equations mod a prime.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

$\bmod 7$

Modular Exponentiation \% 7

x	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

a	a^{1}	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}
1						
2						
3						
4						
5						
6						

Exponentiation

- Compute 7836581453
- Compute 78365^{81453} \% 104729
- Output is small
- need to keep intermediate results small

Repeated Squaring - small and fast

Since $a \% m \equiv a(\bmod m)$ and $b \% m \equiv b(\bmod m)$ we have $a b \% m=((a \% m)(b \% m)) \% m$

So

$$
a^{2} \% m=(a \% m)^{2} \% m
$$

and

$$
a^{4} \% m=\left(a^{2} \% m\right)^{2} \% m
$$

and

$$
a^{8} \% m=\left(a^{4} \% m\right)^{2} \% m
$$

and

$$
a^{16} \% m=\left(a^{8} \% m\right)^{2} \% m
$$

and

$$
a^{32} \% m=\left(a^{16} \% m\right)^{2} \% m
$$

Can compute $a^{k} \% m$ for $k=2^{i}$ in only i steps What if k is not a power of 2 ?

Fast Exponentiation Algorithm

81453 in binary is 10011111000101101
$81453=2^{16}+2^{13}+2^{12}+2^{11}+2^{10}+2^{9}+2^{5}+2^{3}+2^{2}+2^{0}$

$$
a^{81453}=a^{2^{16}} \cdot a^{2^{13}} \cdot a^{2^{12}} \cdot a^{2^{11}} \cdot a^{2^{10}} \cdot a^{2^{9}} \cdot a^{2^{5}} \cdot a^{2^{3}} \cdot a^{2^{2}} \cdot a^{2^{0}}
$$

$\mathrm{a}^{81453} \% \mathrm{~m}=$
(...(()($\mathrm{a}^{216} \% \mathrm{~m}$.

$$
\left.\mathrm{a}^{2^{13}} \% \mathrm{~m}\right) \% \mathrm{~m}
$$

$$
\left.\mathrm{a}^{2^{12}} \% \mathrm{~m}\right) \% \mathrm{~m}
$$

$$
\left.\mathrm{a}^{2^{11}} \% \mathrm{~m}\right) \% \mathrm{~m}
$$

$$
\left.\mathrm{a}^{\mathrm{a}^{10}} \% \mathrm{~m}\right) \% \mathrm{~m}
$$

$$
\left.\mathrm{a}^{2^{9}} \% \mathrm{~m}\right) \% \mathrm{~m}
$$

$$
\left.\mathrm{a}^{2^{5}} \% \mathrm{~m}\right) \% \mathrm{~m}
$$

$$
\left.\mathrm{a}^{2^{3}} \% \mathrm{~m}\right) \% \mathrm{~m}
$$

$$
\left.a^{2^{2}} \% m\right) \% m
$$

$$
\left.a^{2^{0}} \% m\right) \% m
$$

The fast exponentiation algorithm computes $a^{k} \% m$ using $\leq 2 \log k$ multiplications $\% m$

Fast Exponentiation: $a^{k} \% m$ for all k

Another way....

$$
\begin{aligned}
& a^{2 j} \% m=\left(a^{j} \% m\right)^{2} \% m \\
& \quad a^{2 j+1} \% m=\left((a \% m) \cdot\left(a^{2 j} \% m\right)\right) \% m
\end{aligned}
$$

Fast Exponentiation

```
public static long FastModExp(long a, long k, long modulus) {
    long result = 1;
        long temp;
        if (k > 0) {
            if ((k % 2) == 0) {
                temp = FastModExp(a,k/2,modulus);
                result = (temp * temp) % modulus;
        }
        else {
            temp = FastModExp(a,k-1,modulus);
            result = (a * temp) % modulus;
        }
        }
        return result;
    }
\[
\begin{aligned}
& a^{2 j} \% m=\left(a^{j} \% m\right)^{2} \% m \\
& a^{2 j+1} \% m=\left((a \% m) \cdot\left(a^{2 j} \% m\right)\right) \% m
\end{aligned}
\]
```


Using Fast Modular Exponentiation

- Your e-commerce web transactions use SSL
(Secure Socket Layer) based on RSA encryption
- RSA
- Vendor chooses random 512-bit or 1024-bit primes p, q and 512/1024-bit exponent e. Computes $m=p \cdot q$
- Vendor broadcasts (m, e)
- To send a to vendor, you compute $C=a^{e} \% m$ using fast modular exponentiation and send C to the vendor.
- Using secret p, q the vendor computes d that is the multiplicative inverse of $e \bmod (p-1)(q-1)$.
- Vendor computes $C^{d} \% m$ using fast modular exponentiation.
- Fact: $a=C^{d} \% m$ for $0<a<m$ unless $p \mid a$ or $q \mid a$

