CSE 311.: Foundations of Computing

Lecture 16: Fast modular exponentiation and
Induction




Recap from last lecture

 Bezout’s Theorem. For positive integers a and b, there
are integers s and t so that gcd(a, b) = sa + tb.

» Extended Euclidean algorithm: Finds a triple (g, s, t) so
that g = gcd(a, b) = sa + tb.



Recap from last lecture

 Bezout’s Theorem. For positive integers a and b, there
are integers s and t so that gcd(a, b) = sa + tb.

» Extended Euclidean algorithm: Finds a triple (g, s, t) so
that g = gcd(a, b) = sa + tb.

* Forintegers a and m = 1, we call an integer b with 0 <
b < m the multiplicative inverse if ab = 1 (mod m).

e If 1 =sa+ tm,then s % m is the multiplicative inverse
of a modulo m.



gcd(a,m)=1ifmisprimeand 0 <a <m so
can always solve these equations mod a prime.

Math mod a prime is especially nice

mod 7
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Exponentiation

« Compute 783653143

 Compute 783658143 % 104729

* Output is small
— need to keep intermediate results small



Repeated Squaring - small and fast

Sincea % m = a (modm) and b % m = b (mod m)

we have ab % m = ((a % m)(b % m))% m

So a2%m = (a% m)? %m

and at%m = (a2% m)*> %m
and a8% m = (a*% m)? % m
and al®%m = (a8 % m)* % m
and a32%m = (a®* % m)? % m

Can compute a“ % m for k = 2! in only i steps
What if k is not a power of 2?



Fast Exponentiation

public static long FastModExp(long a, long k, long modulus) {
long result = 1;
long temp;

if (k > 0) {
if ((k % 2) == 0) {
temp = FastModExp(a,k/2,modulus);
result = (temp * temp) % modulus;

}

else {
temp = FastModExp(a,k-1,modulus);
result = (a * temp) % modulus;

}

}

return result;

}

a?%m = (al % m)°%m

a*t1%m = ((a% m)- (a¥ %m)) % m
The fast exponentiation algorithm computes
a’ % m using < 2log k multiplications % m



Using Fast Modular Exponentiation

 Your e-commerce web transactions use SSL
(Secure Socket Layer) based on RSA encryption

* RSA

— Vendor chooses random 512-bit or 1024-bit primes p, q
and 512/1024-bit exponent e. Computes m =p - q

— Vendor broadcasts (m, e)

— To send a to vendor, you compute C = a® % m using
fast modular exponentiation and send C to the vendor.

— Using secret p, g the vendor computes d that is the
multiplicative inverse of e mod (p — 1)(q — 1).

— Vendor computes C? % m using fast modular
exponentiation.

— Fact: a=C?%mfor0 < a < munless p|a or q|a



Mathematical Induction

Method for proving statements about all natural numbers
— A new logical inference rule!
* It only applies over the natural numbers

 The idea is to use the special structure of the naturals
to prove things more easily
— Particularly useful for reasoning about programs!
for(int i=0; i < n; n++) { .. }
* Show P(i) holds after i times through the loop
public int f(int x) {
if (x == @) { return 0; }
else { return f(x - 1) + 1; }
}

* f(x) =x for all values of x > 0 naturally shown by induction.



Prove va,b,m > 0V k € N (a = b (mod m) = a* = b* (mod m))

Let a,b,m > 0 € Z be arbitrary. Let k € N be arbitrary.
Suppose that a = b (mod m).

We know (a = b (mod m) Aa = b (mod m)) - a? = b? (mod m)
by multiplying congruences. So, applying this
repeatedly, we have:

(a = b (modm) Aa =b (modm)) - a® = b? (mod m)
(a® = b? (modm) Aa = b (modm)) - a3 = b3 (mod m)

(a"‘1 = b1 (mod m) Aa = b (mod m)) — a® = b* (mod m)

The “...”s is a problem! We don’t have a proof rule that
allows us to say “do this over and over”.



But there such a property of the natural numbers!

Domain: Natural Numbers

P(0)
vk (P(k) — P(k + 1))

s~ Vn P(n)




Induction Is A Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?



Induction Is A Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)—>P(2) P(2)—P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) PR2) P@3) P#) PG

First, we have P(0).
Since P(n) — P(n+1) for all n, we have P(0) — P(1).

Since P(0) is true and P(0) — P(1), by Modus Ponens, P(1) is true.
Since P(n) — P(n+1) for all n, we have P(1) — P(2).

Since P(1) is true and P(1) — P(2), by Modus Ponens, P(2) is true.



Using The Induction Rule In A Formal Proof
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vk (P(k) — P(k + 1))
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Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

1. Prove P(0)

4. Yk (P(k) — P(k+1))
5. VnP(n) Induction: 1, 4



Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

1. Prove P(0)
2. Let k be an arbitrary integer >0

3. P(k) > P(k+1)
4. Vk(P(k) > P(k+1)) IntroV: 2, 3
5. VnP(n) Induction: 1, 4



Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

1. Prove P(0)
2. Let k be an arbitrary integer >0

3.1. P(k) Assumption

3.2. ..

3.3. P(k+1)
3. P(k) > P(k+1) Direct Proof Rule
4. Vk(P(k) > P(k+1)) IntroV: 2, 3

5. VnP(n) Induction: 1, 4



Translating to an English Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

Base Case

1. Prove P(0)

2. Let k be an arbitrary integer >0 | Inductive
3.1. Suppose that P(k) is true | Hypothesis
3.2. .. Inductive
3.3. Prove P(k+1) is true Step

3. P(k) > P(k+1) Direct Proof Rule

4. Yk (P(k) —> P(k+1)) Intro V: 2, 3

5. VnP(n) Induction: 1, 4



Translating To An English Proof

1. Prove P(0) | Base Case
2. Let k be an arbitrary integer 20
3.1. Assume that P(k) is true

Inductive
Hypothesis

3.2. .. Inductive
3.3. Prove P(k+1) is true Step
3. P(k) > P(k+1) Direct Proof Rule
4. Yk (P(k) = P(k+1)) IntroV: 2, 3
5. VnP(n) Induction: 1, 4

Induction Proof Template
[...Define P(n)...]
We will show that P(n) is true for every n € N by Induction.

Base Case: [...proof of P(0) here...]
Induction Hypothesis:

Suppose that P(k) is true for an arbitrary k € N.
Induction Step:

[...proof of P(k + 1) here...]

The proof of P(k + 1) can invoke the IH somewhere.
So, the claim is true by induction.




Inductive Proofs In 5 Easy Steps

Proof:

1. “‘Let P(n) be... . We will show that P(n) is true for every
n = 0 by Induction.”

2. “Base Case:” Prove P(0)
3. “Inductive Hypothesis:

Suppose P (k) is true for an arbitrary integer k = 0”
4. “Inductive Step:” Prove that P(k + 1) is true.

Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1) !1)
5. “Conclusion: Result follows by induction”



Prove).; i = n(n+1)/2

1. LetP(n)be “Y ,i = n(n+1)/2". We will show P(n) is true
for all natural numbers by induction.



Prove).; i = n(n+1)/2

1. LetP(n)be “Y ,i = n(n+1)/2". We will show P(n) is true
for all natural numbers by induction.
2. Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.



Prove).; i = n(n+1)/2

1. LetP(n)be “Y ,i = n(n+1)/2". We will show P(n) is true
for all natural numbers by induction.
2. Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.




Prove).; i = n(n+1)/2

1.

Let P(n)be “YiLyi = n(n+ 1)/2”. We will show P(n) is true
for all natural numbers by induction.
Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.

Induction Step:
Goal: Show Y 1i = (k + 1) (k + 2)/2,
which is exactly P(k+1).



Prove).; i = n(n+1)/2

1.

N

Let P(n) be “YiL,i = n(n+ 1)/2”. We will show P(n) is true
for all natural numbers by induction.
Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.

Induction Step:
frli =38 i+ (k+1)
= k(k+1)/2 + (k+1) by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2
So, we have shown Y1 i = (k + 1) (k + 2)/2,
which is exactly P(k+1).



Prove).; i = n(n+1)/2

1.

N

Let P(n) be “YiL,i = n(n+ 1)/2”. We will show P(n) is true
for all natural numbers by induction.
Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.

Induction Step:
ktli =YK i+ (k+1)
= k(k+1)/2 + (k+1) by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2
So, we have shown Y1 i = (k + 1) (k + 2)/2,
which is exactly P(k+1).

5. Thus P(n) is true for all n €N, by induction.



Lecture 16 Activity

* You will be assigned to breakout rooms. Please:

* Introduce yourself

* Choose someone to share screen, showing this PDF
« Complete the following proof:

1. LetP(n)be "Y1, 2t = 2n+1 _ 1”7 We will show P(n) is true for all natural number
by induction.

2. Base Case (n=0): ......... so P(0) is true.
Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer k > 0.
4. Induction Step:

We can calculate Y7} 2t = ........= 2¥*2 — 1 using the

Induction Hypothesis P (k).
This shows P(k + 1).

5. Thus P(n) is true for all n €N, by induction.

w

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login
with your UW identity



http://pollev.com/thomas311

Lecture 16 Activity

* You will be assigned to breakout rooms. Please:

* Introduce yourself

* Choose someone to share screen, showing this PDF
« Complete the following proof:

1. LetP(n)be "Y1, 2t = 2n+1 _ 1”7 We will show P(n) is true for all natural number
by induction.

2. Base Case (n=0): 20=1=2 -1 =20*1 -1 so P(0) is true.
Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer k > 0.
4. Induction Step:

We can calculate Y0} 20 = Y 20 4 2F+1 = (2k+1_1) 4 2k+1 = pk+2 _q
using the Induction Hypothesis P (k).

This shows P(k + 1).

5. Thus P(n) is true for all n €N, by induction.

w

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login
with your UW identity



http://pollev.com/thomas311

Another example of a pattern

¢« 20 -1 =1-1=0=3-0

e 22—-1=4 —1=3=23-1

e 2*—1 =16 —1 =15 = 35
¢« 20— 1 =64—-1=63 =3-21
e« 28 — 1 =256 — 1 = 255 = 3:85



Prove: 3| (2°"—1)foralln > 0




Prove: 3| (2%"—1)foralln = 0

1. Let P(n) be “3 | (22"—1)". We will show P(n) is true for all
natural numbers by induction.



Prove: 3| (2%"—1)foralln = 0

1. Let P(n) be “3 | (22"—1)". We will show P(n) is true for all
natural numbers by induction.

2. Base Case (n=0): 220-1=1-1=0=3:0 Therefore P(0) is true



Prove: 3| (2°"—1)foralln > 0

1. Let P(n) be “3 | (22"—1)". We will show P(n) is true for all
natural numbers by induction.

2. Base Case (n=0): 220-1=1-1=0=3:0 Therefore P(0) is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.

l.e., suppose that 3 | (22k-1)




Prove: 3| (2°"—1)foralln > 0

1.

Let P(n) be “3 | (22"—1)". We will show P(n) is true for all
natural numbers by induction.

Base Case (n=0): 220-1=1-1=0=3-0 Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.

Induction Step:
Goal: Show P(k+1), i.e. show 3 | (22(k+1)—1)




Prove: 3| (2%"—1)foralln = 0

1.

Let P(n) be “3 | (22"—1)". We will show P(n) is true for all
natural numbers by induction.

Base Case (n=0): 220-1=1-1=0=3-0 Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.

Induction Step:
By IH, 3 | (22— 1) so 22— 1 = 3j for some integer j
So 22k — 1 = 222 1 = 4(22K) — 1 = 4(3j+1) - 1

= 12j+3 = 3(4j+1)
Therefore 3 | (22(k*1)— 1) which is exactly P(k+1).

5. Thus P(n) is true for all n € N, by induction.



Checkerboard Tiling

 Prove that a 2" x 2" checkerboard with one square
removed can be tiled with:




Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with [
We prove P(n) for alln = 1 by mductlon on n.

2. Base Case: n=1




Checkerboard Tiling

1.

Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with [
We prove P(n) for alln = 1 by mductlon on n.

Base Case: n=1

Inductive Hypothesis: Assume P(k) for some
arbitrary integer k=1

Inductive Step: Prove P(k+1)

Apply IH to
each quadrant
| then fill with
extra tile.




