CSE 311: Foundations of Computing

Lecture 16: Fast modular exponentiation and Induction

- Bezout's Theorem. For positive integers a and b, there are integers s and t so that gcd(a, b) = sa + tb.
- Extended Euclidean algorithm: Finds a triple (g, s, t) so that g = gcd(a, b) = sa + tb.

- Bezout's Theorem. For positive integers a and b, there are integers s and t so that gcd(a, b) = sa + tb.
- Extended Euclidean algorithm: Finds a triple (g, s, t) so that g = gcd(a, b) = sa + tb.
- For integers a and $m \ge 1$, we call an integer b with $0 \le b < m$ the multiplicative inverse if $ab \equiv 1 \pmod{m}$.
- If 1 = sa + tm, then s % m is the multiplicative inverse of $a \mod m$.

gcd(a, m) = 1 if *m* is prime and 0 < a < m so can always solve these equations mod a prime.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

x	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

а	a1	a ²	a ³	a ⁴	a ⁵	a ⁶
1						
2						
3						
4						
5						
6						

x	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

а	a1	a ²	a ³	a ⁴	a ⁵	a ⁶
1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1

Exponentiation

• **Compute** 78365⁸¹⁴⁵³

• Compute 78365⁸¹⁴⁵³ % 104729

Output is small

- need to keep intermediate results small

Since $a \% m \equiv a \pmod{m}$ and $b \% m \equiv b \pmod{m}$ we have ab % m = ((a % m)(b % m))% m

So	$a^2 \% m = (a \% m)^2 \% m$
and	$a^4 \% m = (a^2 \% m)^2 \% m$
and	$a^8 \% m = (a^4 \% m)^2 \% m$
and	$a^{16} \% m = (a^8 \% m)^2 \% m$
and	$a^{32}\% m = (a^{16}\% m)^2\% m$

Can compute $a^k \% m$ for $k = 2^i$ in only *i* steps What if *k* is not a power of 2?

```
public static long FastModExp(long a, long k, long modulus) {
     long result = 1;
    long temp;
     if (k > 0) {
        if ((k % 2) == 0) {
            temp = FastModExp(a,k/2,modulus);
             result = (temp * temp) % modulus;
         }
         else {
             temp = FastModExp(a,k-1,modulus);
             result = (a * temp) % modulus;
         }
     }
     return result;
}
a^{2j}\% m = (a^{j}\% m)^{2}\% m
a^{2j+1}\% m = ((a \% m) \cdot (a^{2j} \% m))\% m
The fast exponentiation algorithm computes
a^k \% m using \leq 2\log k multiplications \% m
```

Using Fast Modular Exponentiation

- Your e-commerce web transactions use SSL (Secure Socket Layer) based on RSA encryption
- RSA
 - Vendor chooses random 512-bit or 1024-bit primes p, qand 512/1024-bit exponent e. Computes $m = p \cdot q$
 - Vendor broadcasts (*m*, *e*)
 - To send *a* to vendor, you compute $C = a^e \% m$ using fast modular exponentiation and send *C* to the vendor.
 - Using secret p, q the vendor computes d that is the multiplicative inverse of $e \mod (p-1)(q-1)$.
 - Vendor computes $C^d \% m$ using fast modular exponentiation.
 - Fact: $a = C^d \% m$ for 0 < a < m unless p|a or q|a

Method for proving statements about all natural numbers

- A new logical inference rule!
 - It only applies over the natural numbers
 - The idea is to **use** the special structure of the naturals to prove things more easily

– Particularly useful for reasoning about programs!

for(int i=0; i < n; n++) { ... }</pre>

Show P(i) holds after i times through the loop
 public int f(int x) {

if (x == 0) { return 0; }

- }
 - f(x) = x for all values of $x \ge 0$ naturally shown by induction.

Let $a, b, m > 0 \in \mathbb{Z}$ be arbitrary. Let $k \in \mathbb{N}$ be arbitrary. Suppose that $a \equiv b \pmod{m}$.

We know $(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^2 \equiv b^2 \pmod{m}$ by multiplying congruences. So, applying this repeatedly, we have:

$$(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \to a^2 \equiv b^2 \pmod{m} (a^2 \equiv b^2 \pmod{m} \land a \equiv b \pmod{m}) \to a^3 \equiv b^3 \pmod{m}$$

$$\left(a^{k-1} \equiv b^{k-1} \pmod{m} \land a \equiv b \pmod{m}\right) \to a^k \equiv b^k \pmod{m}$$

The "..."s is a problem! We don't have a proof rule that allows us to say "do this over and over".

But there such a property of the natural numbers!

Domain: Natural Numbers

P(0) $\forall k \ (P(k) \rightarrow P(k+1))$ $\therefore \forall n \ P(n)$

Induction Is A Rule of Inference

Domain: Natural Numbers

How do the givens prove P(5)?

Induction Is A Rule of Inference

Since P(0) is true and P(0) \rightarrow P(1), by Modus Ponens, P(1) is true. Since P(n) \rightarrow P(n+1) for all n, we have P(1) \rightarrow P(2). Since P(1) is true and P(1) \rightarrow P(2), by Modus Ponens, P(2) is true.

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

 $\therefore \forall n \ P(n)$

$$P(0)$$

$$\forall k \ (P(k) \rightarrow P(k+1))$$

 $\therefore \forall n \ P(n)$

1. Prove P(0)

- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. ∀n P(n)

Induction: 1, 4

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

- 1. Prove P(0)
- 2. Let k be an arbitrary integer ≥ 0

- 3. $P(k) \rightarrow P(k+1)$
- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. ∀n P(n)

Intro \forall : 2, 3 Induction: 1, 4

$$P(0)$$

$$\forall k \ (P(k) \rightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

1. Prove P(0)2. Let k be an arbitrary integer ≥ 0 3.1. P(k)Assumption3.2. ...3.3. P(k+1)3. P(k) \rightarrow P(k+1)Direct Proof Rule4. $\forall k (P(k) \rightarrow P(k+1))$ Intro $\forall: 2, 3$ 5. $\forall n P(n)$ Induction: 1, 4

Translating to an English Proof

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

Conclusion

Translating To An English Proof

Conclusion

Induction Proof Template

[...Define P(n)...] We will show that P(n) is true for every $n \in \mathbb{N}$ by Induction. Base Case: [...proof of P(0) here...] Induction Hypothesis:

Suppose that P(k) is true for an arbitrary $k \in \mathbb{N}$. Induction Step:

[...proof of P(k + 1) here...]

The proof of P(k + 1) can invoke the IH somewhere.

So, the claim is true by induction.

Proof:

- **1.** "Let P(n) be.... We will show that P(n) is true for every $n \ge 0$ by Induction."
- **2.** "Base Case:" Prove P(0)
- **3. "Inductive Hypothesis:**

Suppose P(k) is true for an arbitrary integer $k \ge 0$ "

- 4. "Inductive Step:" Prove that P(k + 1) is true. Use the goal to figure out what you need. Make sure you are using I.H. and point out where you are using it. (Don't assume P(k + 1)!!)
- 5. "Conclusion: Result follows by induction"

Prove
$$\sum_{i=0}^{n} i = n(n+1)/2$$

1. Let P(n) be " $\sum_{i=0}^{n} i = n(n+1)/2$ ". We will show P(n) is true for all natural numbers by induction.

Prove
$$\sum_{i=0}^{n} i = n(n+1)/2$$

- **1.** Let P(n) be " $\sum_{i=0}^{n} i = n(n+1)/2$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.

- **1.** Let P(n) be " $\sum_{i=0}^{n} i = n(n+1)/2$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.

- **1.** Let P(n) be " $\sum_{i=0}^{n} i = n(n+1)/2$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show $\sum_{i=0}^{k+1} i = (k + 1)(k + 2)/2$, which is exactly P(k+1).

- **1.** Let P(n) be " $\sum_{i=0}^{n} i = n(n+1)/2$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

$$\sum_{i=0}^{k+1} i = \sum_{i=0}^{k} i + (k+1)$$

= k(k+1)/2 + (k+1) by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2
shown $\sum_{i=0}^{k+1} i = (k+1)(k+2)/2$

So, we have shown $\sum_{i=0}^{k+1} i = (k+1)(k+2)/2$, which is exactly P(k+1).

- **1.** Let P(n) be " $\sum_{i=0}^{n} i = n(n+1)/2$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

$$\sum_{i=0}^{k+1} i = \sum_{i=0}^{k} i + (k+1)$$

= k(k+1)/2 + (k+1) by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2

So, we have shown $\sum_{i=0}^{k+1} i = (k+1)(k+2)/2$, which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

Lecture 16 Activity

- You will be assigned to **breakout rooms**. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF
- Complete the following proof:
 - **1.** Let P(n) be $\sum_{i=0}^{n} 2^{i} = 2^{n+1} 1^{n}$. We will show P(n) is true for all natural number by induction.
 - **2.** Base Case (n=0): so P(0) is true.
 - **3.** Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
 - 4. Induction Step:

We can calculate $\sum_{i=0}^{k+1} 2^i = \dots = 2^{k+2} - 1$ using the Induction Hypothesis P(k). This shows P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

Fill out a poll everywhere for Activity Credit! Go to pollev.com/thomas311 and login with your UW identity

Lecture 16 Activity

- You will be assigned to **breakout rooms**. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF
- Complete the following proof:
 - **1.** Let P(n) be $\sum_{i=0}^{n} 2^{i} = 2^{n+1} 1^{n}$. We will show P(n) is true for all natural number by induction.
 - 2. Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
 - **3.** Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
 - 4. Induction Step:

We can calculate $\sum_{i=0}^{k+1} 2^i = \sum_{i=0}^k 2^i + 2^{k+1} = (2^{k+1}-1) + 2^{k+1} = 2^{k+2} - 1$ using the Induction Hypothesis P(k).

This shows P(k + 1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

Fill out a poll everywhere for Activity Credit! Go to pollev.com/thomas311 and login with your UW identity

- $2^0 1 = 1 1 = 0 = 3 \cdot 0$
- $2^2 1 = 4 1 = 3 = 3 \cdot 1$
- $2^4 1 = 16 1 = 15 = 3 \cdot 5$
- $2^6 1 = 64 1 = 63 = 3 \cdot 21$
- $2^8 1 = 256 1 = 255 = 3 \cdot 85$
- • •

1. Let P(n) be "3 | $(2^{2n} - 1)$ ". We will show P(n) is true for all natural numbers by induction.

- **1.** Let P(n) be "3 | $(2^{2n}-1)$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^{2\cdot 0}-1=1-1=0=3\cdot 0$ Therefore P(0) is true

- **1.** Let P(n) be "3 | $(2^{2n}-1)$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^{2\cdot 0}-1=1-1=0=3\cdot 0$ Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.

I.e., suppose that $3 | (2^{2k} - 1)$

- **1.** Let P(n) be "3 | $(2^{2n} 1)$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^{2\cdot 0}-1=1-1=0=3\cdot 0$ Therefore P(0) is true.
- **3.** Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show $3 | (2^{2(k+1)} - 1)$

- **1.** Let P(n) be "3 | $(2^{2n} 1)$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^{2\cdot 0}-1=1-1=0=3\cdot 0$ Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

By IH, 3 |
$$(2^{2k} - 1)$$
 so $2^{2k} - 1 = 3j$ for some integer j
So $2^{2(k+1)} - 1 = 2^{2k+2} - 1 = 4(2^{2k}) - 1 = 4(3j+1) - 1$
= $12j+3 = 3(4j+1)$

Therefore 3 | $(2^{2(k+1)}-1)$ which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

Checkerboard Tiling

• Prove that a $2^n \times 2^n$ checkerboard with one square removed can be tiled with:

Checkerboard Tiling

- **1.** Let P(n) be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with \square . We prove P(n) for all $n \ge 1$ by induction on n.
- 2. Base Case: n=1

Checkerboard Tiling

- **1.** Let P(n) be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with \square . We prove P(n) for all $n \ge 1$ by induction on n.
- 2. Base Case: n=1
- 3. Inductive Hypothesis: Assume P(k) for some arbitrary integer $k \ge 1$
- 4. Inductive Step: Prove P(k+1)

Apply IH to each quadrant then fill with extra tile.