
CSE 311: Foundations of Computing

Lecture 16:  Fast modular exponentiation and 
Induction



Recap from last lecture

• Bezout’s Theorem. For positive integers 𝑎 and 𝑏, there 
are integers 𝑠 and 𝑡 so that gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏.

• Extended Euclidean algorithm: Finds a triple (𝑔, 𝑠, 𝑡) so 
that 𝑔 = gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏.



Recap from last lecture

• Bezout’s Theorem. For positive integers 𝑎 and 𝑏, there 
are integers 𝑠 and 𝑡 so that gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏.

• Extended Euclidean algorithm: Finds a triple (𝑔, 𝑠, 𝑡) so 
that 𝑔 = gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏.

• For integers 𝑎 and 𝑚 ≥ 1, we call an integer 𝑏 with 0 ≤
𝑏 < 𝑚 the multiplicative inverse if 𝑎𝑏 ≡ 1 (mod 𝑚).

• If 1 = 𝑠𝑎 + 𝑡𝑚, then 𝑠 %𝑚 is the multiplicative inverse 
of 𝑎 modulo 𝑚.



Math mod a prime is especially nice

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

gcd(𝑎,𝑚) = 1 if 𝑚 is prime and 0 < 𝑎 < 𝑚 so 
can always solve these equations mod a prime.

mod 7



Modular Exponentiation % 7

X 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

a a1 a2 a3 a4 a5 a6

1

2

3

4

5

6



Modular Exponentiation % 7

X 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

a a1 a2 a3 a4 a5 a6

1 1 1 1 1 1 1

2 2 4 1 2 4 1

3 3 2 6 4 5 1

4 4 2 1 4 2 1

5 5 4 6 2 3 1

6 6 1 6 1 6 1



Exponentiation

• Compute 7836581453

• Compute 7836581453 % 104729

• Output is small
– need to keep intermediate results small



Repeated Squaring – small and fast

Since 𝑎 %𝑚 ≡ 𝑎 mod 𝑚 and 𝑏 %𝑚 ≡ 𝑏 mod 𝑚
we have 𝑎𝑏 %𝑚 = 𝑎 %𝑚 𝑏 %𝑚 %𝑚

So            𝑎2%𝑚 = 𝑎 %𝑚 ! %𝑚
and          𝑎4%𝑚 = 𝑎2%𝑚 ! %𝑚
and          𝑎8%𝑚 = 𝑎4%𝑚 ! %𝑚
and          𝑎16%𝑚 = 𝑎8%𝑚 ! %𝑚
and          𝑎32%𝑚 = 𝑎16%𝑚 ! %𝑚

Can compute 𝑎𝑘%𝑚 for 𝑘 = 2𝑖 in only 𝑖 steps
What if 𝑘 is not a power of 2?



Fast Exponentiation
public static long FastModExp(long a, long k, long modulus) {

long result = 1;
long temp;

if (k > 0) {
if ((k % 2) == 0) {

temp = FastModExp(a,k/2,modulus);
result = (temp * temp) % modulus;

}
else {

temp = FastModExp(a,k-1,modulus);
result = (a * temp) % modulus;

}
}
return result;

}

𝑎)*%𝑚 = 𝑎* %𝑚 )%𝑚
𝑎)*+,%𝑚 = (𝑎 %𝑚) ' 𝑎2𝑗%𝑚 %𝑚
The fast exponentiation algorithm computes 
𝑎! %𝑚 using ≤ 2log 𝑘 multiplications %𝑚



Using Fast Modular Exponentiation

• Your e-commerce web transactions use SSL 
(Secure Socket Layer) based on RSA encryption

• RSA
– Vendor chooses random 512-bit or 1024-bit primes 𝒑, 𝒒

and 512/1024-bit exponent 𝒆.  Computes 𝒎 = 𝒑 ⋅ 𝒒
– Vendor broadcasts (𝒎, 𝒆)
– To send 𝒂 to vendor, you compute 𝑪 = 𝒂𝒆%𝒎 using 

fast modular exponentiation and send 𝑪 to the vendor.
– Using secret 𝒑, 𝒒 the vendor computes 𝒅 that is the 

multiplicative inverse of 𝒆 mod (𝒑 − 𝟏)(𝒒 − 𝟏).
– Vendor computes 𝑪𝒅%𝒎 using fast modular 

exponentiation.
– Fact:   𝒂 = 𝑪𝒅%𝒎 for 𝟎 < 𝒂 < 𝒎 unless 𝒑|𝒂 or 𝒒|𝒂



Mathematical Induction

Method for proving statements about all natural numbers
– A new logical inference rule!
• It only applies over the natural numbers
• The idea is to use the special structure of the naturals 

to prove things more easily
– Particularly useful for reasoning about programs!

for(int i=0; i < n; n++) { … }
• Show P(i) holds after i times through the loop
public int f(int x) { 

if (x == 0) { return 0; }
else { return f(x – 1) + 1; }

}
• f(x) = x for all values of x ≥ 0 naturally shown by induction.



Prove ∀𝑎, 𝑏,𝑚 > 0 ∀ 𝑘 ∈ ℕ (𝑎 ≡ 𝑏 mod 𝑚 → 𝑎# ≡ 𝑏# mod 𝑚 )

Let 𝑎, 𝑏,𝑚 > 0 ∈ ℤ be arbitrary. Let 𝑘 ∈ ℕ be arbitrary.
Suppose that 𝑎 ≡ 𝑏 mod 𝑚 .

We know 𝑎 ≡ 𝑏 mod 𝑚 ∧ 𝑎 ≡ 𝑏 mod 𝑚 → 𝑎! ≡ 𝑏! mod 𝑚
by multiplying congruences.  So, applying this 
repeatedly, we have:

𝑎 ≡ 𝑏 mod 𝑚 ∧ 𝑎 ≡ 𝑏 mod 𝑚 → 𝑎! ≡ 𝑏! mod 𝑚
𝑎! ≡ 𝑏! mod 𝑚 ∧ 𝑎 ≡ 𝑏 mod 𝑚 → 𝑎" ≡ 𝑏" mod 𝑚

…
𝑎#$% ≡ 𝑏#$% mod 𝑚 ∧ 𝑎 ≡ 𝑏 mod 𝑚 → 𝑎# ≡ 𝑏# mod 𝑚

The “…”s is a problem!  We don’t have a proof rule that 
allows us to say “do this over and over”.



But there such a property of the natural numbers!

Domain: Natural Numbers

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Induction Is A Rule of Inference
Domain: Natural Numbers

How do the givens prove P(5)?

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Induction Is A Rule of Inference
Domain: Natural Numbers

How do the givens prove P(5)?

First, we have P(0).
Since P(n) → P(n+1) for all n, we have P(0)→ P(1).  

Since P(0) is true and P(0)→ P(1), by Modus Ponens, P(1) is true.
Since P(n) → P(n+1) for all n, we have P(1)→ P(2).

Since P(1) is true and P(1) → P(2), by Modus Ponens, P(2) is true.

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1. Prove P(0)
2. Let k be an arbitrary integer ≥ 0

3.1.  Assume that P(k) is true
3.2.  ...
3.3.  Prove P(k+1) is true

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1. Prove P(0)
2. Let k be an arbitrary integer ≥ 0

3.1.  Assume that P(k) is true
3.2.  ...
3.3.  Prove P(k+1) is true

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1. Prove P(0)
2. Let k be an arbitrary integer ≥ 0

3.1. P(k) Assumption
3.2.  ...
3.3.  P(k+1)

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Translating to an English Proof

1. Prove P(0)
2. Let k be an arbitrary integer ≥ 0

3.1. Suppose that P(k) is true
3.2.  ...
3.3.  Prove P(k+1) is true

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

Base Case
Inductive 
Hypothesis

Inductive 
Step

Conclusion

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Translating To An English Proof

[…Define P(n)…]
We will show that 𝑃(𝑛) is true for every 𝑛 ∈ ℕ by Induction.
Base Case: […proof of 𝑃(0) here…]
Induction Hypothesis: 

Suppose that 𝑃(𝑘) is true for an arbitrary 𝑘 ∈ ℕ.
Induction Step:

[…proof of 𝑃(𝑘 + 1) here…]
The proof of 𝑃(𝑘 + 1) can invoke the IH somewhere.

So, the claim is true by induction.

Induction Proof Template



Inductive Proofs In 5 Easy Steps

Proof: 
1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for every 

𝑛 ≥ 0 by Induction.”
2. “Base Case:” Prove 𝑃(0)
3. “Inductive Hypothesis:

Suppose 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 0”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true.

Use the goal to figure out what you need. 
Make sure you are using I.H. and point out where you are 
using it.  (Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: Result follows by induction”



1. Let P(n) be “ ∑./01 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is true 
for all natural numbers by induction.

Prove∑1234 𝑖 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “ ∑./01 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.

Prove∑1234 𝑖 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “ ∑./01 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.

Prove∑1234 𝑖 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “ ∑./01 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal: Show ∑./0!23 𝑖 = (𝑘 + 1)(𝑘 + 2)/2, 
which is exactly P(k+1).

Prove∑1234 𝑖 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “ ∑./01 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

∑./0!23 𝑖 = ∑./0! 𝑖 + (k+1) 
= k(k+1)/2 + (k+1)  by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2

So, we have shown ∑./0!23 𝑖 = (𝑘 + 1)(𝑘 + 2)/2, 
which is exactly P(k+1).

Prove∑1234 𝑖 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “ ∑./01 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

∑./0!23 𝑖 = ∑./0! 𝑖 + (k+1) 
= k(k+1)/2 + (k+1)  by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2

So, we have shown ∑./0!23 𝑖 = (𝑘 + 1)(𝑘 + 2)/2, 
which is exactly P(k+1).

5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove∑1234 𝑖 = 𝑛(𝑛 + 1)/2



Lecture 16 Activity
• You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share screen, showing this PDF 
• Complete the following proof: 

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login 
with your UW identity

1. Let P(n) be ``∑!"#$ 2! = 2$%& − 1”.  We will show P(n) is true for all natural numbers 
by induction.

2. Base Case (n=0):  ……… so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some  arbitrary integer k ≥ 0.
4. Induction Step:  

We can calculate ∑!"#'%& 2! = …… . . = 2'%( − 1 using the 
Induction Hypothesis 𝑃 𝑘 .
This shows 𝑃(𝑘 + 1).

5. Thus P(n) is true for all n ∈ℕ, by induction.

http://pollev.com/thomas311


Lecture 16 Activity
• You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share screen, showing this PDF 
• Complete the following proof: 

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login 
with your UW identity

1. Let P(n) be ``∑!"#$ 2! = 2$%& − 1”.  We will show P(n) is true for all natural numbers 
by induction.

2. Base Case (n=0):  20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some  arbitrary integer k ≥ 0.
4. Induction Step:  

We can calculate ∑!"#'%& 2! = ∑!"#' 2! + 2'%& = (2'%&−1) + 2'%& = 2'%( − 1
using the        Induction Hypothesis 𝑃 𝑘 .

This shows 𝑃(𝑘 + 1).
5. Thus P(n) is true for all n ∈ℕ, by induction.

http://pollev.com/thomas311


Another example of a pattern

• 20 − 1 = 1 − 1 = 0 = 3 ⋅ 0
• 22 − 1 = 4 − 1 = 3 = 3 ⋅ 1
• 24 − 1 = 16 − 1 = 15 = 3 ⋅ 5
• 26 − 1 = 64 − 1 = 63 = 3 ⋅ 21
• 28 − 1 = 256 − 1 = 255 = 3 ⋅ 85
• ⋯



Prove:  3 ∣ (254−1) for all 𝑛 ≥ 0



1. Let P(n) be “3 | (22n – 1)”.  We will show P(n) is true for all 
natural numbers by induction.

2. Base Case (n=0):    22·0-1=1-1=0=3·0 Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 3 | 22(k+1) - 1
By IH 22k – 1 = 3j for some integer j

So 22(k+1) – 1 = 22k+2 – 1 = 4(22k) – 1 = 4(3j+1) – 1
= 12j+3 = 3(4j+1)

Therefore 3 | 22(k+1) - 1 which is exactly P(k+1).
5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove:  3 ∣ (254−1) for all 𝑛 ≥ 0



1. Let P(n) be “3 | (22n – 1)”.  We will show P(n) is true for all 
natural numbers by induction.

2. Base Case (n=0):    22·0-1=1-1=0=3·0 Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 3 | 22(k+1) - 1
By IH 22k – 1 = 3j for some integer j

So 22(k+1) – 1 = 22k+2 – 1 = 4(22k) – 1 = 4(3j+1) – 1
= 12j+3 = 3(4j+1)

Therefore 3 | 22(k+1) - 1 which is exactly P(k+1).
5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove:  3 ∣ (254−1) for all 𝑛 ≥ 0



1. Let P(n) be “3 | (22n – 1)”.  We will show P(n) is true for all 
natural numbers by induction.

2. Base Case (n=0):    22·0-1=1-1=0=3·0 Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
I.e., suppose that 3 | (22k – 1)

By IH 22k – 1 = 3j for some integer j
So 22(k+1) – 1 = 22k+2 – 1 = 4(22k) – 1 = 4(3j+1) – 1

= 12j+3 = 3(4j+1)
Therefore 3 | 22(k+1) - 1 which is exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove:  3 ∣ (254−1) for all 𝑛 ≥ 0



1. Let P(n) be “3 | (22n – 1)”.  We will show P(n) is true for all 
natural numbers by induction.

2. Base Case (n=0):    22·0-1=1-1=0=3·0 Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 3 | (22(k+1) – 1)
By IH 22k – 1 = 3j for some integer j

So 22(k+1) – 1 = 22k+2 – 1 = 4(22k) – 1 = 4(3j+1) – 1
= 12j+3 = 3(4j+1)

Therefore 3 | 22(k+1) - 1 which is exactly P(k+1).
5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove:  3 ∣ (254−1) for all 𝑛 ≥ 0



1. Let P(n) be “3 | (22n – 1)”.  We will show P(n) is true for all 
natural numbers by induction.

2. Base Case (n=0):    22·0-1=1-1=0=3·0 Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

By IH, 3 | (22k – 1) so 22k – 1 = 3j for some integer j
So 22(k+1) – 1 = 22k+2 – 1 = 4(22k) – 1 = 4(3j+1) – 1

= 12j+3 = 3(4j+1)
Therefore 3 | (22(k+1) – 1) which is exactly P(k+1).

5. Thus P(n) is true for all n ∈ ℕ, by induction.

Prove:  3 ∣ (254−1) for all 𝑛 ≥ 0



Checkerboard Tiling

• Prove that a 2𝑛´ 2𝑛 checkerboard with one square 
removed can be tiled with:



Checkerboard Tiling

1. Let P(n) be any 2n´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1 by induction on n.

2. Base Case: n=1



Checkerboard Tiling

1. Let P(n) be any 2n´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1 by induction on n.

2. Base Case: n=1
3. Inductive Hypothesis:  Assume P(k) for some  

arbitrary integer k≥1
4. Inductive Step: Prove P(k+1)

Apply IH to 
each quadrant 
then fill with 
extra tile.


