
CSE 311: Foundations of Computing

Lecture 17:  Strong induction



Recap from last lecture

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)

The induction inference rule: 



Recap from last lecture

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)

The induction inference rule: 

Proof: 

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for every    𝑛 ≥ 0 by Induction.”

2. “Base Case:” Prove 𝑃(0)

3. “Inductive Hypothesis: Suppose 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 0”   

4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true.

Use the goal to figure out what you need. 

Make sure you are using I.H. and point out where you are using it.  (Don’t 
assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: Result follows by induction”

The induction template in an English proof: 



Checkerboard Tiling

• Prove that a 2𝑛  2𝑛 checkerboard with one square 

removed can be tiled with:



Checkerboard Tiling

1. Let P(n) be any 2n 2n checkerboard with one square 

removed can be tiled with         .                                                

We prove P(n) for all n ≥ 1 by induction on n.

2. Base Case: n=1



Checkerboard Tiling

1. Let P(n) be any 2n 2n checkerboard with one square 

removed can be tiled with         .                                                

We prove P(n) for all n ≥ 1 by induction on n.

2. Base Case: n=1

3. Inductive Hypothesis:  Assume P(k) for some  

arbitrary integer k≥1

4. Inductive Step: Prove P(k+1)

Apply IH to 

each quadrant 

then fill with 

extra tile.



Prove 3𝑛 ≥ 𝑛2 + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n ≥  n2+3”.  We will show P(n) is true for all      

integers n ≥ 2 by induction.

2. Base Case (n=2):  32 = 9 ≥ 7 = 4+3 = 22+3 so P(2) is true.

3. Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 2.

4. Induction Step:  

Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4

3k+1 = 3(3k)

≥ 3(k2+3) by the IH

= k2+2k2+9

≥ k2+2k+1 = (k+1)2  since k ≥ 1.

Therefore P(k+1) is true.

5. Thus P(n) is true for all n ∈ℕ, by induction.
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5. Thus P(n) is true for all integers n ≥ 2, by induction.
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Recall: Induction Rule of Inference

Domain: Natural Numbers

How do the givens prove P(5)?

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Recall: Induction Rule of Inference

Domain: Natural Numbers

How do the givens prove P(5)?

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)

We made it harder than we needed to ...

When we proved 𝑃(2) we knew BOTH 𝑃(0) and 𝑃(1)
When we proved 𝑃(3) we knew 𝑃(0) and 𝑃(1) and 𝑃 2
When we proved 𝑃(4) we knew 𝑃(0), 𝑃(1), 𝑃 2 , 𝑃(3)
etc.

That’s the essence of the idea of Strong Induction.



Strong Induction

𝑃 0

∀𝑘 𝑃 0 ∧ 𝑃 1 ∧ 𝑃 2 ∧ ⋯ ∧ 𝑃 𝑘 → 𝑃 𝑘 + 1

∴ ∀𝑛 𝑃(𝑛)



Strong Induction

𝑃 0

∀𝑘 𝑃 0 ∧ 𝑃 1 ∧ 𝑃 2 ∧ ⋯ ∧ 𝑃 𝑘 → 𝑃 𝑘 + 1

∴ ∀𝑛 𝑃(𝑛)

Strong induction for 𝑃 follows from ordinary induction for 𝑄
where

𝑄 𝑘 = 𝑃 0 ∧ 𝑃 1 ∧ 𝑃 2 ∧ ⋯ ∧ 𝑃 𝑘

Note that 𝑄(0) ≡ 𝑃(0) and 𝑄(𝑘 + 1) ≡ 𝑄(𝑘) ∧ 𝑃 𝑘 + 1
and  ∀𝑛 𝑄 𝑛 ≡ ∀𝑛 𝑃(𝑛)



Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 

integers 𝑛 ≥ 𝑏 by induction.”

2. “Base Case:” Prove 𝑃(𝑏)

3. “Inductive Hypothesis:

Assume that for some arbitrary integer 𝑘 ≥ 𝑏,

𝑃(𝑘) is true” 

4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:

Use the goal to figure out what you need. 

Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”



Strong Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 

integers 𝑛 ≥ 𝑏 by strong induction.”

2. “Base Case:” Prove 𝑃(𝑏)

3. “Inductive Hypothesis:

Assume that for some arbitrary integer 𝑘 ≥ 𝑏,

𝑃(𝑗) is true for every integer 𝑗 from 𝑏 to 𝑘”   

4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:

Use the goal to figure out what you need. 

Make sure you are using I.H. (that 𝑃(𝑏), … , 𝑃(𝑘) are true)

and point out where you are using it.                           

(Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”



Lecture 17 Activity

Fill out the poll everywhere for Activity Credit!

Go to pollev.com/philipmg and login with your UW 

identity

You will be assigned to breakout rooms. Please:

• Introduce yourself

• Choose someone to share their screen, showing this PDF

• Prove that any amount ≥ $12 can be paid with coins of value $4 & $5. 

Fill in the gaps in the following proof:  

1. “Set 𝑃 𝑛 ≔ ``there are integers 𝑠, 𝑡 witℎ 𝑠 ≥ 0, 𝑡 ≥ 0 so that 𝑛 = 4𝑠 + 5𝑡’’.

We will show that 𝑃(𝑛) is true for all integers 𝑛 ≥ 12 by strong induction.”

2. “Base Case:” Prove 𝑃 12 , 𝑃 13 , 𝑃 14 , 𝑃(15).    ……

3. “Inductive Hypothesis:  Assume that for some arbitrary integer 𝑘 ≥ 15,
𝑃(𝑗) is true for every integer 𝑗 from 12 to 𝑘”   

4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:

….

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 12”

http://pollev.com/philipmg


Lecture 17 Activity

You will be assigned to breakout rooms. Please:

• Prove that any amount ≥ $12 can be paid with coins of value $4 & $5. 

Fill in the gaps in the following proof:  

1. “Set 𝑃 𝑛 ≔ ``there are integers 𝑠, 𝑡 witℎ 𝑠 ≥ 0, 𝑡 ≥ 0 so that 𝑛 = 4𝑠 + 5𝑡’’.

We will show that 𝑃(𝑛) is true for all integers 𝑛 ≥ 12 by strong induction.”

2. “Base Case:” Prove 𝑃 12 , 𝑃 13 , 𝑃 14 , 𝑃(15).   

𝑃(12) holds because 12 = 4 ⋅ 3 + 5 ⋅ 0

𝑃(13) holds because 13 = 4 ⋅ 2 + 5 ⋅ 1

𝑃(14) holds because 14 = 4 ⋅ 1 + 5 ⋅ 2

𝑃(15) holds because 15 = 4 ⋅ 0 + 5 ⋅ 3

3. “Inductive Hypothesis:  Assume that for some arbitrary integer 𝑘 ≥ 15,
𝑃(𝑗) is true for every integer 𝑗 from 12 to 𝑘”   

4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:

We know that 𝑘 + 1 − 4 ≥ 12 and 𝑘 + 1 − 4 ≤ 𝑘. Hence 𝑃(𝑘 + 1 − 4) is true 

by IH. Then there are non-negative integers 𝑠, 𝑡 with 𝑘 + 1 − 4 = 4𝑠 + 5𝑡. That means 

𝑘 + 1 = 4 ⋅ 𝑠 + 1 + 5𝑡. Hence 𝑃(𝑘 + 1) is true.

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 12”



Recall: Fundamental Theorem of Arithmetic

Every integer > 1 has a unique prime 

factorization

48 =  2 • 2 • 2 • 2 • 3

591 = 3 • 197

45,523 = 45,523

321,950 = 2 • 5 • 5 • 47 • 137

1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803

We use strong induction to prove that a factorization into

primes exists, but not that it is unique.



Every integer ≥ 2 is a product of primes.



1. Let P(n) be “n is a product of primes”.  We will show that P(n) is true 

for all integers n ≥ 2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of primes. 

Therefore P(2) is true.

3. Inductive :  Suppose that for some arbitrary integer k ≥ 2, 

P(j) is true for every integer j between 2 and k

4. Inductive Step:

Goal:  Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime:  Then by definition k+1 is a product of primes

Case: k+1 is composite: Then k+1=ab for some integers a and b 
where 2 ≤ a, b ≤ k. By our IH, P(a) and P(b) are true so we have

a = p1p2 ⋯ pm and b = q1q2 ⋯
for some primes p1,p2,..., pm, q1,q2,..., qn.

Thus, k+1 = ab = p1p2 ⋯ pmq1q2 ⋯ qn which is a product of primes. 

Since k ≥ 1, one of these cases must happen and so P(k+1) is true: 

5. Thus P(n) is true for all integers n ≥ 2, by induction.

Every integer ≥ 2 is a product of primes.
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1. Let P(n) be “n is a product of primes”.  We will show that P(n) is true 

for all integers n ≥ 2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of primes. 

Therefore P(2) is true.

3. Inductive Hyp:  Suppose that for some arbitrary integer k ≥ 2, 

P(j) is true for every integer j between 2 and k

4. Inductive Step:

Goal:  Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime:  Then by definition k+1 is a product of primes

Case: k+1 is composite: Then k+1=ab for some integers a and b 
where 2 ≤ a, b ≤ k. By our IH, P(a) and P(b) are true so we have

a = p1p2 ⋯ pr and b = q1q2 ⋯ qs

for some primes p1,p2,..., pr, q1,q2,..., qs.

Thus, k+1 = ab = p1p2 ⋯ prq1q2 ⋯ qs which is a product of primes. 

Since k ≥ 1, one of these cases must happen and so P(k+1) is true. 
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1. Let P(n) be “n is a product of primes”.  We will show that P(n) is true 

for all integers n ≥ 2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of primes. 

Therefore P(2) is true.

3. Inductive Hyp:  Suppose that for some arbitrary integer k ≥ 2, 

P(j) is true for every integer j between 2 and k

4. Inductive Step:

Goal:  Show P(k+1); i.e. k+1 is a product of primes
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where 2 ≤ a, b ≤ k. By our IH, P(a) and P(b) are true so we have

a = p1p2 ⋯ pr and b = q1q2 ⋯ qs

for some primes p1,p2,..., pr, q1,q2,..., qs.

Thus, k+1 = ab = p1p2 ⋯ prq1q2 ⋯ qs which is a product of primes. 

Since k ≥ 2, one of these cases must happen and so P(k+1) is true. 

5. Thus P(n) is true for all integers n ≥ 2, by strong induction.

Every integer ≥ 2 is a product of primes.



Strong Induction is particularly useful when...

...we need to analyze methods that on input 𝑘 make 

a recursive call for an input different from 𝑘 − 1.

e.g.:  Recursive Modular Exponentiation:

– For exponent 𝑘 > 0 it made a recursive call with 

exponent j = 𝑘/2 when 𝑘 was even or j = 𝑘 − 1 when 𝑘
was odd.

We won’t analyze this particular method by strong 

induction, but we could.   

However, we will use strong induction to analyze 

other functions with recursive definitions.



Recursive definitions of functions 

• 𝐹(0) = 0; 𝐹(𝑛 + 1) = 𝐹(𝑛) + 1 for all 𝑛 ≥ 0. 

• 𝐺(0) = 1; 𝐺(𝑛 + 1) = 2 ∙ 𝐺(𝑛) for all 𝑛 ≥ 0. 

• 0! = 1; (𝑛 + 1)! = (𝑛 + 1) ∙ 𝑛! for all 𝑛 ≥ 0.

• 𝐻(0) = 1; 𝐻(𝑛 + 1) = 2𝐻 𝑛 for all 𝑛 ≥ 0.



Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 

integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1∙0!=1∙1=1=11 so P(1) is true.

3. Inductive Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.

4. Inductive Step:  

Goal:  Show P(k+1), i.e. show (k+1)! ≤ (k+1)k+1

(k+1)! = (k+1)∙k!            by definition of !

≤ (k+1)∙ kk by the IH and k+1 >0                          
≤ (k+1)∙ (k+1)k since k ≥ 0

= (k+1)k+1

Therefore P(k+1) is true.

5. Thus P(n) is true for all n ≥ 1, by induction.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1


