
CSE 311: Foundations of Computing

Lecture 18:  Recursive definitions



Recap: Strong Inductive Proofs

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
integers 𝑛 ≥ 𝑏 by strong induction.”

2. “Base Case:” Prove 𝑃 𝑏 ,… , 𝑃(𝑐)
3. “Inductive Hypothesis:

Assume that for some arbitrary integer 𝑘 ≥ 𝑐,
𝑃(𝑗) is true for every integer 𝑗 from 𝑏 to 𝑘”   

4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
Use the goal to figure out what you need. 
You may apply the I.H. (𝑃(𝑏), … , 𝑃(𝑘) are true) anywhere.
Point out where you are using it.
(Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”



Recursive Definition of Sets

Recursive Definition
• Basis Step: 0 ∈	S
• Recursive Step: If x ∈	S, then x + 2 ∈	S
• Exclusion Rule: Every element in S follows from 

basis steps and a finite number of recursive 
steps.



Recursive Definitions of Sets

Basis:  [0, 0] ∈	S, [1, 1] ∈	S
Recursive: If [n-1, x] ∈	S and [n, y] ∈	S,

then [n+1, x + y] ∈	S.

Powers of 3:
Basis: 1 ∈	S
Recursive: If x ∈	S, then 3x ∈	S.

Natural numbers
Basis:  0 ∈	S
Recursive: If x ∈	S, then x+1 ∈	S 

Even numbers
Basis:  0 ∈	S
Recursive: If x ∈	S, then x+2 ∈	S 

?



Recursive Definitions of Sets

Basis:  [0, 0] ∈	S, [1, 1] ∈	S
Recursive: If [n-1, x] ∈	S and [n, y] ∈	S,

then [n+1, x + y] ∈	S.

Powers of 3:
Basis: 1 ∈	S
Recursive: If x ∈	S, then 3x ∈	S.

Natural numbers
Basis:  0 ∈	S
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Even numbers
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Fibonacci numbers



Recursive Definitions of Sets: General Form

Recursive definition
– Basis step: Some specific elements are in 𝑆
– Recursive step: Given some existing named 

elements in 𝑆 some new objects constructed 
from these named elements are also in 𝑆.

– Exclusion rule:  Every element in 𝑆 follows from 
basis steps and a finite number of recursive 
steps



Strings

• An alphabet S is any finite set of characters

• The set S* of strings over the alphabet S is 
defined by
– Basis: ℇ Î S (ℇ is the empty string)
– Recursive:  if 𝑤 Î S*, 𝑎 Î S, then 𝑤𝑎 Î S*



Palindromes

Palindromes are strings that are the same 
backwards and forwards

Basis: 
ℇ is a palindrome and any 𝑎 ∈ S is a palindrome

Recursive step:
If 𝑝 is a palindrome then 𝑎𝑝𝑎 is a palindrome for
every 𝑎 ∈ S



All Binary Strings with no 1’s before 0’s



All Binary Strings with no 1’s before 0’s

Basis: 
ℇ ∈	S

Recursive:
If x ∈	S, then 0x ∈	S
If x ∈	S, then x1 ∈	S



Function Definitions on Recursively Defined Sets

Length:
len(ℇ) = 0
len(wa) = 1 + len(w) for w ∈	Σ*, a ∈	Σ

Reversal:
ℇR = ℇ
(wa)R = awR for w ∈	Σ*, a ∈	Σ

Concatenation:
x • ℇ = x for x ∈	Σ*

x • wa = (x • w)a for x ∈	Σ*, a ∈	Σ



Lecture 18 Activity
• You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share screen, showing this PDF 
• Consider the set 𝑆 that is recursively defined by

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login 
with your UW identity

Basis: 6 ∈ 𝑆, 15 ∈ 𝑆
Recursive: If 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆

• List explicitly the elements of 𝑆

http://pollev.com/thomas311


Recall: Fundamental Theorem of Arithmetic

Every integer > 1 has a unique prime 
factorization

48 =  2 • 2 • 2 • 2 • 3
591 = 3 • 197
45,523 = 45,523
321,950 = 2 • 5 • 5 • 47 • 137
1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803

We use strong induction to prove that a factorization into
primes exists, but not that it is unique.



Every integer ≥ 2 is a product of primes.



1. Let P(n) be “n is a product of primes”.  We will show that P(n) is true 
for all integers n ≥ 2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of primes. 
Therefore P(2) is true.

3. Inductive :  Suppose that for some arbitrary integer k ≥ 2, 
P(j) is true for every integer j between 2 and k

4. Inductive Step:
Goal:  Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime:  Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b 

where 2 ≤ a, b ≤ k. By our IH, P(a) and P(b) are true so we have
a = p1p2 ⋯ pm and b = q1q2 ⋯

for some primes p1,p2,..., pm, q1,q2,..., qn.
Thus, k+1 = ab = p1p2 ⋯pmq1q2 ⋯ qn which is a product of primes. 

Since k ≥ 1, one of these cases must happen and so P(k+1) is true: 
5. Thus P(n) is true for all integers n ≥ 2, by induction.

Every integer ≥ 2 is a product of primes.
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Strong Induction is particularly useful when...

...we need to analyze methods that on input 𝑘 make 
a recursive call for an input different from 𝑘 − 1.

e.g.:  Recursive Modular Exponentiation:
– For exponent 𝑘 > 0 it made a recursive call with 

exponent j = 𝑘/2 when 𝑘 was even or j = 𝑘 − 1 when 𝑘
was odd.

We won’t analyze this particular method by strong 
induction, but we could.   
However, we will use strong induction to analyze 
other functions with recursive definitions.



Recursive definitions of functions 

• 𝐹(0) = 0; 𝐹(𝑛 + 1) = 𝐹(𝑛) + 1 for all 𝑛 ≥ 0. 

• 𝐺(0) = 1; 𝐺(𝑛 + 1) = 2 5 𝐺(𝑛) for all 𝑛 ≥ 0. 

• 0! = 1; (𝑛 + 1)! = (𝑛 + 1) 5 𝑛! for all 𝑛 ≥ 0.

• 𝐻(0) = 1; 𝐻(𝑛 + 1) = 2" # for all 𝑛 ≥ 0.



More Recursive Definitions

Suppose that ℎ:ℕ → ℝ.  

Then we have familiar summation notation: 
∑!"## ℎ 𝑖 = ℎ(0)
∑!"#$%& ℎ 𝑖 = ℎ 𝑛 + 1 + ∑!"#$ ℎ 𝑖 for 𝑛 ≥ 0

There is also product notation:  
∏!"#
# ℎ 𝑖 = ℎ(0)

∏!"#
$%& ℎ 𝑖 = ℎ(𝑛 + 1) 1 ∏!"#

$ ℎ 𝑖 for 𝑛 ≥ 0



Fibonacci Numbers

𝑓# = 0
𝑓& = 1
𝑓$ = 𝑓$'& + 𝑓$'( for all 𝑛 ≥ 2



Bounding Fibonacci I:  𝑓$ < 2$ for all 𝑛 ≥ 0

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐 for all 𝒏 ≥ 𝟐



Bounding Fibonacci I:  𝑓$ < 2$ for all 𝑛 ≥ 0

1. Let P(n) be “fn < 2n ”.   We prove that P(n) is true for all 
integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, P(j) is true for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≤ 2k+1

Case k+1 = 1:  Then f1 = 1 ≤ 21 so P(k+1) is true here.
Case k+1 ≥ 2:  Then fk+1 = fk +  fk-1 by definition

≤ 2k + 2k-1 by the IH
≤ 2k + 2k = 2·2k  = 2k+1

so P(k+1) is true in this case.
5.    Therefore by strong induction, fn ≤ 2n for all integers n ≥ 0.
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𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐 for all 𝒏 ≥ 𝟐

No need for cases for the definition here:
fk+1 = fk + fk-1  since k+1 ≥ 2

Now just want to apply the IH to get P(k) and P(k-1)
Problem:  Though we can get P(k) since k ≥ 2,

k-1 may only be 1 so we can’t conclude P(k-1)
Solution: Separate cases for when k-1=1 (or k+1=3).
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Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓!"#.



Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓!"#.

An informal way to get the idea: Consider an n step gcd
calculation starting with rn+1=a and rn=b:

rn+1 =   qnrn +  rn-1
rn = qn-1rn-1 + rn-2

…
r3 =   q2r2 + r1
r2 =   q1r1

Now r1 ≥ 1 and each qk must be ≥ 1.    If we replace all the
qK’s by 1 and replace r1 by 1 , we can only reduce the rk’s.  
After that reduction, rk=fk for every k.

For all k ≥ 2, rk-1= rk+1 mod rk



Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓!"#.

We go by strong induction on n.  
Let P(n) be “gcd(a,b) with a ≥ b>0 takes n steps → a ≥ fn+1” for all n ≥ 1.  

Base Case: n=1   Suppose Euclid’s Algorithm with a ≥ b > 0  takes 1 step. 
By assumption, a ≥ b ≥ 1 = f2 so P(1) holds.

Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 
for all integers j s.t. 1 ≤ j ≤ k



Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓!"#.

We go by strong induction on n.  
Let P(n) be “gcd(a,b) with a ≥ b>0 takes n steps → a ≥ fn+1” for all n ≥ 1.  

Base Case: n=1   Suppose Euclid’s Algorithm with a ≥ b > 0  takes 1 step. 
By assumption, a ≥ b ≥ 1 = f2 so P(1) holds.

Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 
for all integers j s.t. 1 ≤ j ≤ k

Inductive Step: We want to show: if gcd(a,b) with a ≥ b > 0 takes k+1 
steps, then a ≥ fk+2.



Running time of Euclid’s algorithm
Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k 
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Now if k+1=2, then Euclid’s algorithm on a and b can be written as 
a = q2b  + r1 
b = q1r1

and r1 > 0.

Also, since a ≥ b > 0 we must have q2 ≥ 1 and b ≥ 1. 

So a = q2b + r1 ≥ b + r1 ≥ 1+1 = 2 = f3 = fk+2 as required.



Running time of Euclid’s algorithm
Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k 
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Next suppose that k+1 ≥ 3 so for the first 3 steps of Euclid’s 
algorithm on a and b we have

a = qk+1b + rk
b  = qk rk + rk-1
rk = qk-1rk-1 + rk-2

and there are k-2 more steps after this.
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algorithm on a and b we have

a = qk+1b + rk
b  = qk rk + rk-1
rk = qk-1rk-1 + rk-2

and there are k-2 more steps after this.   Note that this means that 
the gcd(b, rk) takes k steps and gcd(rk, rk-1) takes k-1 steps.

So since k, k-1 ≥ 1 by the IH we have b ≥ fk+1 and rk ≥ fk.
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Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k 
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Next suppose that k+1 ≥ 3 so for the first 3 steps of Euclid’s 
algorithm on a and b we have

a = qk+1b + rk
b  = qk rk + rk-1
rk = qk-1rk-1 + rk-2

and there are k-2 more steps after this.   Note that this means that 
the gcd(b, rk) takes k steps and gcd(rk, rk-1) takes k-1 steps.

So since k, k-1 ≥ 1 by the IH we have b ≥ fk+1 and rk ≥ fk.

Also, since a ≥ b we must have qk+1 ≥ 1. 

So a = qk+1b + rk ≥ b + rk ≥ fk+1+ fk= fk+2 as required.



Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓!"#.

Why does this help us bound the running time of Euclid’s 
Algorithm?

We already proved that 𝑓! ≥ 2 ⁄! % & # so 𝑓!"# ≥ 2 ⁄(!&#) %

Therefore: if Euclid’s Algorithm takes 𝑛 steps
for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0
then 𝑎 ≥ 2 ⁄(!&#) %

so (𝑛 − 1)/2 ≤ log% 𝑎 or 𝑛 ≤ 1 + 2log% 𝑎
i.e., # of steps ≤ 1 + twice the # of bits in 𝑎.


