CSE 311: Foundations of Computing

Lecture 19: Structural induction

Image from @Hevesh5 on YouTube

Fibonacci Numbers

$$f_{0} = 0 \qquad g \in \mathcal{A}(a, b) = g \in \mathcal{A}(b \in \mathbb{Z})$$

$$f_{1} = 1$$

$$f_{n} = f_{n-1} + f_{n-2} \text{ for all } n \ge 2$$
Last lecture: $f_{n} < 2^{n}$ for all $n \ge 0$

Similar: $f_n \ge 2^{\frac{n}{2}-1}$ for all $n \ge 2$

 $1 | \Gamma$

Theorem: Suppose that Euclid's Algorithm takes n steps for gcd(a, b) with $a \ge b > 0$. Then, $a \ge f_{n+1}$.

This implies: $n \leq 1 + 2\log_2 a$

i.e., # of steps $\leq 1 +$ twice the # of bits in a.

Recursive definition

- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

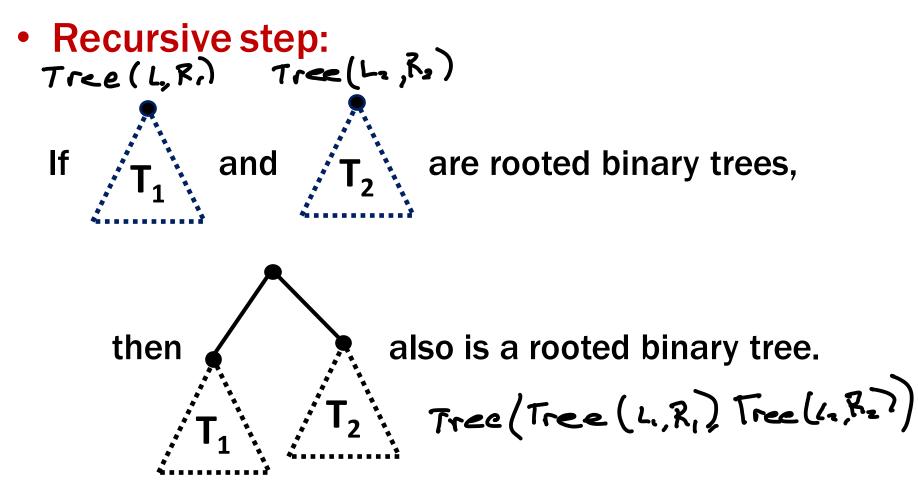
Example: The set Σ^* of strings over the alphabet Σ is defined by

- **Basis:** $\mathcal{E} \in \mathcal{I}(\mathcal{E} \text{ is the empty string})$
- **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Example of function for recursively defined set: String length

- len(E) = 0
- len(wa) = 1 + len(w) for $w \in \Sigma^*$, $a \in \Sigma$

Basis:
 is a rooted binary tree



Defining Functions on Rooted Binary Trees

• size(•) = 1

• size
$$\left(\begin{array}{c} & & \\ &$$

• height(•) = 0

• height
$$\left(\begin{array}{c} & \\ & T_1 \\ & T_2 \\ & T_2 \end{array} \right) = 1 + \max\{\text{height}(T_1), \text{height}(T_2)\}$$

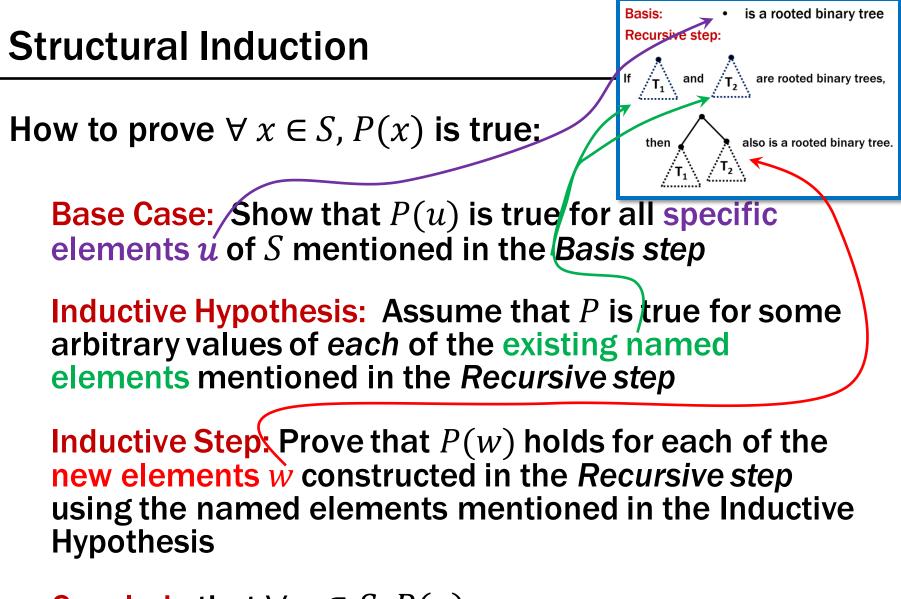
How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$



Conclude that $\forall x \in S, P(x)$

- Let *S* be given by...
 - **Basis:** $6 \in S$; $15 \in S$;
 - **Recursive:** if $x, y \in S$ then $x + y \in S$.

1. Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.

- **1.** Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true

- **1**. Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3|6 and 3|15 so P(6) and P(15) are true
- **3. Inductive Hypothesis: Suppose that** P(x) **and** P(y) **are true for some arbitrary** $x,y \in S$

4. Inductive Step: Goal: Show P(x+y)

- **1.** Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3|6 and 3|15 so P(6) and P(15) are true
- **3. Inductive Hypothesis: Suppose that** P(x) **and** P(y) **are true** for some arbitrary $x,y \in S$
- **4. Inductive Step:** Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and since P(y) is true, 3|y and so y=3n for some integer n. Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).

Hence P(x+y) is true.

5. Therefore by induction 3 | x for all $x \in S$.

Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of structural induction:

Recursive definition of \mathbb{N} **Basis:** $0 \in \mathbb{N}$ **Recursive step:** If $k \in \mathbb{N}$ then $k + 1 \in \mathbb{N}$

Structural induction follows from ordinary induction:

Define Q(n) to be "for all $x \in S$ that can be constructed in at most n recursive steps, P(x) is true."

$$f = \{0, 1\}$$
Lecture 19 Activity $\sum_{x=\{\epsilon, 0, 1, 00, 01, 10, 1\}}$

••• \$

You will be assigned to breakout rooms. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Recall that we defined recursively
 - Strings. Basis: $\varepsilon \in \Sigma^*$ Recursive: If $w \in \Sigma^*$ and $a \in \Sigma$ then $wa \in \Sigma^*$
 - Concatenation of strings. Basis: $x \cdot \varepsilon = x$ for Σ^* Recursive: $x \cdot wa = (x \cdot w)a$ for $x \in \Sigma^*$, $a \in \Sigma$
- Let P(y) be ``len $(x \cdot y) = len(x) + len(y)$ for all $x \in \Sigma^{*''}$
- We want to prove P(y) fo all $y \in \Sigma^*$ by structural induction. Please complete the proof:

Base Case: Let $x \in \Sigma^*$ arbitrary. Then $len(x \cdot \varepsilon) = len(x) = len(x) + 0 = len(x) + len(\varepsilon)$. Hence $P(\varepsilon)$. Inductive Hypothesis: Suppose P(w) for an arbitrary $w \in \Sigma^*$. Inductive Step: ...

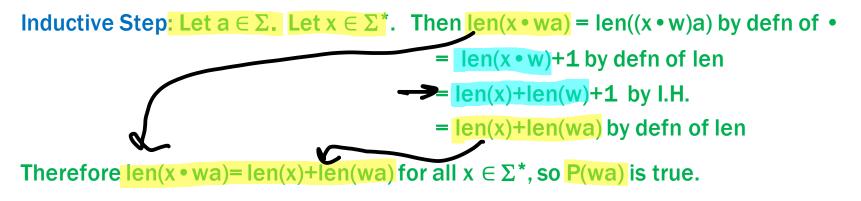
Fill out the poll everywhere for Activity Credit! Go to pollev.com/philipmg and login with your UW identity

Lecture 19 Activity

- Recall that we defined recursively
 - Strings. Basis: $\varepsilon \in \Sigma^*$ Recursive: If $w \in \Sigma^*$ and $a \in \Sigma$ then $wa \in \Sigma^*$
 - Concatenation of strings. Basis: $x \cdot \varepsilon = x$ for Σ^* Recursive: $x \cdot wa = (x \cdot w)a$ for $x \in \Sigma^*$, $a \in \Sigma$
- $\textbf{Let } P(y) \textbf{ be ``} len(x \cdot y) = len(x) + len(y) \textbf{ for all } x \in \Sigma^* "$
 - We want to prove P(y) fo all $y \in \Sigma^*$ by structural induction. Please complete the proof:

Base Case: Let $x \in \Sigma^*$ arbitrary. Then $len(x \cdot \varepsilon) = len(x) = len(x) + 0 = len(x) + len(\varepsilon)$. Hence $P(\varepsilon)$.

Inductive Hypothesis: Suppose P(w) for an arbitrary $w \in \Sigma^*$.



So, by induction $len(x \bullet y) = len(x) + len(y)$ for all $x, y \in \Sigma^*$

1. Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.

1. Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .
- 4. Inductive Step:

Goal: Prove P(

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .
- 4. Inductive Step: By defn, size(T_1) $=1+size(T_1)+size(T_2)$ $\leq 1+2^{height(T_1)+1}-1+2^{height(T_2)+1}-1$ by IH for T_1 and T_2 $\leq 2^{height(T_1)+1}+2^{height(T_2)+1}-1$ $\leq 2(2^{max(height(T_1),height(T_2))+1})-1$ $\leq 2(2^{height(A)})-1 \leq 2^{height(A)}+1-1$ which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.