CSE 311: Foundations of Computing

Lecture 19: Structural induction

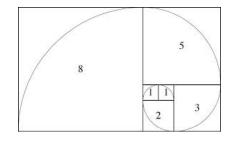
Fibonacci Numbers

$$f_0 = 0$$

 $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2}$ for all $n \ge 2$

Last lecture: $f_n < 2^n$ for all $n \ge 0$

Similar: $f_n \ge 2^{\frac{n}{2}-1}$ for all $n \ge 2$



Theorem: Suppose that Euclid's Algorithm takes n steps for gcd(a, b) with $a \ge b > 0$. Then, $a \ge f_{n+1}$.

This implies: $n \le 1 + 2\log_2 a$ i.e., # of steps ≤ 1 + twice the # of bits in a.

Recap: Recursive Definitions of Sets

Recursive definition

- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Example: The set Σ^* of strings over the alphabet Σ is defined by

- **Basis:** $\mathcal{E} \in \Sigma$ (\mathcal{E} is the empty string)
- Recursive: if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

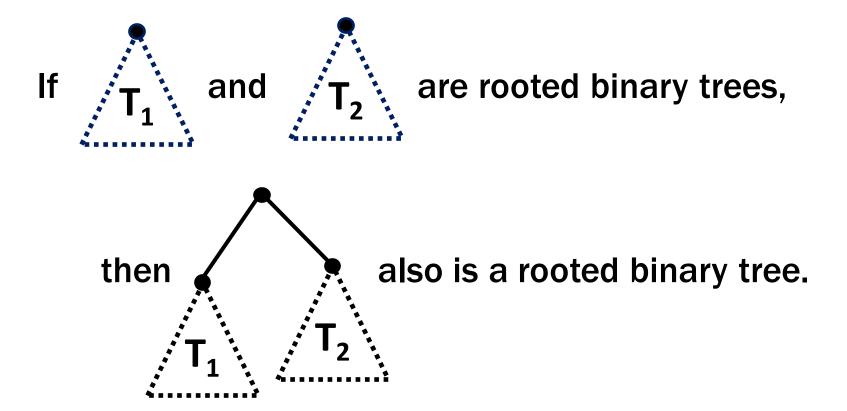
Example of function for recursively defined set: String length

- $len(\mathcal{E}) = 0$
- len(wa) = 1 + len(w) for $w \in \Sigma^*$, $a \in \Sigma$

Rooted Binary Trees

Basis:

- is a rooted binary tree
- Recursive step:



Defining Functions on Rooted Binary Trees

• $size(\bullet) = 1$

• size
$$\left(\begin{array}{c} T_1 \\ T_2 \end{array}\right) = 1 + \text{size}(T_1) + \text{size}(T_2)$$

- height(•) = 0
- height (T_1) = 1 + max{height(T_1), height(T_2)}

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

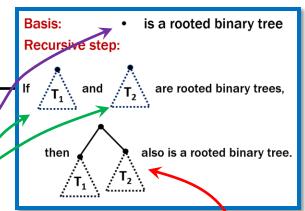
Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:



Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of structural induction:

Recursive definition of $\mathbb N$

Basis: $0 \in \mathbb{N}$

Recursive step: If $k \in \mathbb{N}$ then $k + 1 \in \mathbb{N}$

Structural induction follows from ordinary induction:

Define Q(n) to be "for all $x \in S$ that can be constructed in at most n recursive steps, P(x) is true."

Using Structural Induction

- Let S be given by...
 - **Basis:** 6 ∈ S; 15 ∈ S;
 - Recursive: if $x, y \in S$ then $x + y \in S$.

Claim: Every element of S is divisible by 3.

1. Let P(x) be " $3 \mid x$ ". We prove that P(x) is true for all $x \in S$ by structural induction.

Basis: $6 \in S$; $15 \in S$;

- **1.** Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.
- 2. Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true

Basis: $6 \in S$; $15 \in S$;

- **1.** Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.
- 2. Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true
- 3. Inductive Hypothesis: Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$
- 4. Inductive Step: Goal: Show P(x+y)

Basis: $6 \in S$; $15 \in S$;

- **1.** Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.
- 2. Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true
- 3. Inductive Hypothesis: Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$
- 4. Inductive Step: Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and since P(y) is true, 3|y and so y=3n for some integer n. Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).

Hence P(x+y) is true.

5. Therefore by induction $3 \mid x$ for all $x \in S$.

Basis: $6 \in S$; $15 \in S$;

Lecture 19 Activity

You will be assigned to breakout rooms. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Recall that we defined recursively
 - Strings. Basis: $\varepsilon \in \Sigma^*$ Recursive: If $w \in \Sigma^*$ and $a \in \Sigma$ then $wa \in \Sigma^*$
 - Concatenation of strings. Basis: $x \cdot \varepsilon = x$ for Σ^* Recursive: $x \cdot wa = (x \cdot w)a$ for $x \in \Sigma^*$, $a \in \Sigma$
- Let P(y) be $\operatorname{len}(x \cdot y) = \operatorname{len}(x) + \operatorname{len}(y)$ for all $x \in \Sigma^{*''}$
- We want to prove P(y) fo all $y \in \Sigma^*$ by structural induction. Please complete the proof:

```
Base Case: Let x \in \Sigma^* arbitrary. Then \operatorname{len}(x \cdot \varepsilon) = \operatorname{len}(x) = \operatorname{len}(x) + 0 = \operatorname{len}(x) + \operatorname{len}(\varepsilon). Hence P(\varepsilon). Inductive Hypothesis: Suppose P(w) for an arbitrary w \in \Sigma^*. Inductive Step: ...
```

Fill out the poll everywhere for Activity Credit!
Go to pollev.com/philipmg and login with your UW identity

Lecture 19 Activity

- Recall that we defined recursively
 - Strings. Basis: $\varepsilon \in \Sigma^*$ Recursive: If $w \in \Sigma^*$ and $a \in \Sigma$ then $wa \in \Sigma^*$
 - Concatenation of strings. Basis: $x \cdot \varepsilon = x$ for Σ^* Recursive: $x \cdot wa = (x \cdot w)a$ for $x \in \Sigma^*$, $a \in \Sigma$
- Let P(y) be $\operatorname{len}(x \cdot y) = \operatorname{len}(x) + \operatorname{len}(y)$ for all $x \in \Sigma^*$ "
- We want to prove P(y) fo all $y \in \Sigma^*$ by structural induction. Please complete the proof:

```
Base Case: Let x \in \Sigma^* arbitrary. Then \operatorname{len}(x \cdot \varepsilon) = \operatorname{len}(x) = \operatorname{len}(x) + 0 = \operatorname{len}(x) + \operatorname{len}(\varepsilon). Hence P(\varepsilon).
```

Inductive Hypothesis: Suppose P(w) for an arbitrary $w \in \Sigma^*$.

Inductive Step: Let $a \in \Sigma$. Let $x \in \Sigma^*$. Then $len(x \cdot wa) = len((x \cdot wa))$ by defin of \cdot

- = $len(x \cdot w) + 1$ by defin of len
- = len(x)+len(w)+1 by I.H.
- = len(x) + len(wa) by defin of len

Therefore len(x • wa)= len(x)+len(wa) for all $x \in \Sigma^*$, so P(wa) is true.

So, by induction $len(x \cdot y) = len(x) + len(y)$ for all $x,y \in \Sigma^*$

1. Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: $size(\bullet)=1$, $height(\bullet)=0$, and $2^{0+1}-1=2^1-1=1$ so $P(\bullet)$ is true.

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: $size(\bullet)=1$, $height(\bullet)=0$, and $2^{0+1}-1=2^1-1=1$ so $P(\bullet)$ is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .
- 4. Inductive Step: Goal: Prove P().

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: $size(\bullet)=1$, $height(\bullet)=0$, and $2^{0+1}-1=2^1-1=1$ so $P(\bullet)$ is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .
- 5. So, the P(T) is true for all rooted bin. trees by structural induction.