CSE 311: Foundations of Computing

Lecture 21: Context-Free Grammars

[Audience looks around]
"What is going on? There must be some context we're missing"

Recap: Regular expressions are "patterns"

ε matches the empty string
a matches the one character string a
$A \cup B$ matches all strings that either A matches or B matches (or both)
$A B$ matches all strings that have a first part that A matches followed by a second part that B matches
A* matches all strings that are concatenations of any number of strings (even 0) that A matches, (equivalently, $A^{*}=\varepsilon \cup A \cup A A$ $\cup A A A \cup \ldots)$

Example: ($00 \cup 01 \cup 10 \cup 11)^{*}$ corresponds to set of even length binary strings $\Sigma \Sigma^{x}$
Fact: Now every language can be described by a regular expression (i.e. palindromes; proof later in this course)

Example Context-Free Grammars

$$
\begin{aligned}
& \Sigma=\{0,1\} \\
& S \rightarrow A \mid B \\
& A \rightarrow B \mid \varepsilon \\
& B \rightarrow 01
\end{aligned}
$$

Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
- A finite set \mathbf{V} of variables that can be replaced
- Alphabet Σ of terminal symbols that can't be replaced
- One variable, usually \mathbf{S}, is called the start symbol
- The emptystring
- The rules involving a variable \mathbf{A} are written as

$$
A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}
$$

where each w_{i} is a string of variables and terminals that is $\mathrm{w}_{\mathrm{i}} \in(\mathbf{V} \cup \Sigma)^{*}$

How CFGs generate strings

- Begin with start symbol S
- If there is some variable \mathbf{A} in the current string you can replace it by one of the w's in the rules for \mathbf{A}
$-A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}$
- Write this as $x A y \Rightarrow x w y$
- Repeat until no variables left
- The set of strings the CFG generates are all strings produced in this way that have no variables

Example Context-Free Grammars

$$
\begin{array}{ll}
\Sigma=\{0,1\} & S \Rightarrow A \Rightarrow \varepsilon \\
S \rightarrow A \mid B & S \Rightarrow B \Rightarrow 01 \\
A \rightarrow B \mid \varepsilon & S \Rightarrow A \Rightarrow B \Rightarrow 01 \\
B \rightarrow 01 &
\end{array}
$$

Example Context-Free Grammars
Example: $\quad \mathbf{S} \rightarrow \mathbf{O S O} \mid 1 \mathbf{S 1 | 0 | 1 | \varepsilon}$

$$
s \Rightarrow 050 \Rightarrow 0.1510 \Rightarrow 01110
$$

Example Context-Free Grammars

Example: $\mathbf{S} \rightarrow \mathbf{0 S O} \mathbf{~ 1 S 1 | 0 | 1 | \varepsilon}$

The set of all binary palindromes

Example Context-Free Grammars
Example: $\quad \mathbf{S} \rightarrow \mathbf{0 S O} \mathbf{1 S 1 | 0 | 1 | \varepsilon}$

The set of all binary palindromes

Example: $\quad \mathbf{S} \rightarrow 0 \mathrm{~S}|\mathbf{S} 1| \varepsilon$

$$
s \Rightarrow 0 s \Rightarrow 0 S 1 \Rightarrow 00 S 1 \Rightarrow 001
$$

Example Context-Free Grammars

Example: $\mathbf{S} \rightarrow \mathbf{0 S O} \mid \mathbf{1 S 1 | 0 | 1 | \varepsilon}$

The set of all binary palindromes

Example: $\quad \mathbf{S} \rightarrow$ OS | S1 \| ε

0*1*

Example Context-Free Grammars
Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(all strings with same \# of 0's and 1's with all 0's before 1's)

$$
\begin{aligned}
& s \rightarrow 051 \mid \varepsilon \\
& s \Rightarrow 051 \Rightarrow 00511
\end{aligned} \begin{aligned}
& \Rightarrow 0005111 \\
& \Rightarrow 000111
\end{aligned}
$$

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$

(all strings with same \# of 0's and 1's with all 0's before 1's)

$$
\mathbf{S} \rightarrow \text { 0S1 } \mid \varepsilon
$$

Example Context-Free Grammars
Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(all strings with same \# of 0's and 1's with all 0's before 1's)

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$

(all strings with same \# of 0's and 1's with all 0's before 1's)

$$
\mathbf{S} \rightarrow 0 \mathbf{S} 1 \mid \varepsilon
$$

Example: $\quad \mathbf{S} \rightarrow \mathbf{(S)}|\mathbf{S S}| \varepsilon$

The set of all strings of matched parentheses

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $(2 * x)+y$

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $(2 * x)+y$

$$
\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow(\mathrm{E})+\mathrm{E} \Rightarrow(\mathrm{E} * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{y}
$$

Lecture 21 Activity

You will be assigned to breakout rooms. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Consider the CFG (start symbol is E)

$$
\mathbf{E} \rightarrow \mathbf{E}+\mathbf{E}|\mathbf{E} * \mathbf{E}|(\mathbf{E})|\mathrm{x}| \mathrm{y}|\mathrm{z}| 0|1| 2|3| 4|5| 6|7| 8 \mid 9
$$

- Example to generate ($2 * x$) +y

$$
\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow(\mathrm{E})+\mathrm{E} \Rightarrow(\mathrm{E} * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{y}
$$

- Find two different ways to generate $2+3 * 4$

Fill out the poll everywhere for Activity Credit!
Go to pollev.com/philipmg and login with your UW identity

Lecture 21 Activity

You will be assigned to breakout rooms. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Consider the CFG (start symbol is E)

$$
\mathbf{E} \rightarrow \mathbf{E}+\mathbf{E}|\mathbf{E} * \mathbf{E}|(\mathbf{E})|\mathrm{x}| \mathrm{y}|\mathrm{z}| 0|1| 2|3| 4|5| 6|7| 8 \mid 9
$$

- Example to generate ($2 * x$) +y

$$
\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow(\mathrm{E})+\mathrm{E} \Rightarrow(\mathrm{E} * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{y}
$$

- Find two different ways to generate $2+3 * 4$
$\rightarrow E \Rightarrow E+E=2$

$\rightarrow \mathrm{E} \Rightarrow \mathrm{E} * \mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} * \mathrm{E} \Rightarrow 2+\mathrm{E} * \mathrm{E} \Rightarrow 2+3 * \mathrm{E} \Rightarrow 2+3 * 4$

Parse Trees

Suppose that grammar G generates a string x

- A parse tree of x for G has
- Root labeled S (start symbol of G)
- The children of any node labeled A are labeled by symbols of w left-to-right for some rule $A \rightarrow w$
- The symbols of x label the leaves ordered left-to-right

$$
\begin{array}{r}
S \rightarrow \text { OSO | 1S1|0|1| } \varepsilon \\
\text { Parse tree of } 01110
\end{array}
$$

CFGs and recursively-defined sets of strings

- A CFG with the start symbol \mathbf{S} as its only variable recursively defines the set of strings of terminals that \mathbf{S} can generate
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by each of its variables
- Sometimes necessary to use more than one
building precedence in simple arithmetic expressions
- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N}-number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{x}|\mathrm{y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

$$
x+y-z
$$

building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N}-number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathrm{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{x}|\mathrm{y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9 \\
&(x+y) \cdot z
\end{aligned}
$$

building precedence in simple arithmetic expressions

- E-expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N}-number

$$
\begin{array}{ll}
\mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} & 22+x \\
\mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} & \\
\mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} & 005+x \\
\mathbf{I} \rightarrow \mathrm{x}|\mathrm{y}| \mathrm{z} & \\
\mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8|9| \text { NN } / \mathbf{E} \mid
\end{array}
$$

building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N}-number
$\mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T}$
$\mathrm{T} \rightarrow \mathrm{F} \mid \mathrm{F} * \mathrm{~T}$
$\mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N}$
I $\rightarrow x|y| z$
$\mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$

CFGs and regular expressions
Theorem: For any set of strings (language) A described by a regular expression, there is a CFG that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...

Regular Expressions over Σ

- Basis:
$-\varnothing, \varepsilon$ are regular expressions
$-\mathbf{a}$ is a regular expression for any $\boldsymbol{a} \in \Sigma$
- Recursive step:
- If A and B are regular expressions then so are:
$(A \cup B)$
(AB)
A*

CFGs are more general than REs

- CFG to match RE ε

$$
\mathbf{S} \rightarrow \varepsilon
$$

- CFG to match RE a (for any $a \in \Sigma$)
$\mathbf{S} \rightarrow \mathrm{a}$

CFGs are more general than REs

- CFG to match RE ε

$$
\mathbf{S} \rightarrow \varepsilon
$$

- CFG to match RE a (for any $a \in \Sigma$)
$\mathbf{S} \rightarrow \mathrm{a}$

CFGs are more general than REs

Suppose CFG with start symbol S_{1} matches RE A CFG with start symbol $\mathbf{S}_{\mathbf{2}}$ matches RE \mathbf{B}

- CFG to match RE $\mathbf{A} \cup \mathbf{B}$

$$
S \rightarrow S_{1} \mid S_{2}
$$

- CFG to match RE AB
$\mathbf{S} \rightarrow \mathbf{S}_{1} \mathbf{S}_{\mathbf{2}}$

CFGs are more general than REs

Suppose CFG with start symbol \mathbf{S}_{1} matches RE A

- $C F G$ to match RE $A^{*} \quad(=\varepsilon \cup \mathbf{A} \cup A A \cup A A A \cup \ldots)$

$$
\mathbf{S} \rightarrow \mathbf{S}_{\mathbf{1}} \mathbf{S} \mid \varepsilon
$$

Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

- Originally used to define programming languages
- Variables denoted by long names in angle brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
$::=$ used instead of \rightarrow

BNF for C

```
statement:
    ((identifier | "case" constant-expression | "default") ":")*
    (expression? ";" |
        block |
        "if" "(" expression ")" statement |
        "if" "(" expression ")" statement "else" statement |
        "switch" "(" expression ")" statement |
        "while" "(" expression ")" statement |
        "do" statement "while" "(" expression ")" ";" |
        "for" "(" expression? ";" expression? ";" expression? ")" statement |
        "goto" identifier ";" |
        "continue" ";" |
        "break" ";" |
        "return" expression? ";"
    )
block: "{" declaration* statement* "}"
expression:
    assignment-expression%
assignment-expression: (
            unary-expression (
            "=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "&=" |
            "^=" | "|="
        )
    )* conditional-expression
conditional-expression:
    logical-OR-expression ( "?" expression ":" conditional-expression )?
```


Parse Trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>
Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

