CSE 311: Foundations of Computing

Lecture 21: Context-Free Grammars

[Audience looks around]

"What is going on? There must be some context we're missing"

Recap: Regular expressions are "patterns"

- ε matches the empty string
- a matches the one character string a
- $A \cup B$ matches all strings that either A matches or B matches (or both)
- AB matches all strings that have a first part that A matches followed by a second part that B matches
- A* matches all strings that are concatenations of any number of strings (even 0) that A matches, (equivalently, $A^* = \varepsilon \cup A \cup AA \cup ...$)

Example: $(00 \cup 01 \cup 10 \cup 11)^*$ corresponds to set of even length binary strings Σ , Σ

Fact: Now every language can be described by a regular expression (i.e. palindromes; proof later in this course)

Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
 - A finite set V of variables that can be replaced
 - Alphabet Σ of *terminal symbols* that can't be replaced
 - One variable, usually S, is called the start symbol

The rules involving a variable A are written as

$$\mathbf{A} \rightarrow \mathbf{w}_1 \mid \mathbf{w}_2 \mid \cdots \mid \mathbf{w}_k$$

where each w_i is a string of variables and terminals – that is $w_i \in (\mathbf{V} \cup \mathbf{\Sigma})^*$

How CFGs generate strings

- Begin with start symbol S
- If there is some variable A in the current string you can replace it by one of the w's in the rules for A
 - $A \rightarrow W_1 \mid W_2 \mid \cdots \mid W_k$
 - Write this as $xAy \Rightarrow xwy$
 - Repeat until no variables left
- The set of strings the CFG generates are all strings produced in this way that have no variables

Example: $S \to 0S0 | 1S1 | 0 | 1 | \epsilon$

The set of all binary palindromes

Example: $S \to 0S0 | 1S1 | 0 | 1 | \epsilon$

The set of all binary palindromes

Example:
$$S \rightarrow 0S \mid S1 \mid \varepsilon$$

 $S \Rightarrow 0S \Rightarrow 0S \Rightarrow 00S \Rightarrow 00S$

Example: $S \to 0S0 | 1S1 | 0 | 1 | \epsilon$

The set of all binary palindromes

Example: $S \rightarrow 0S \mid S1 \mid \epsilon$

0*1*

Grammar for $\{0^n 1^n : n \ge 0\}$

(all strings with same # of 0's and 1's with all 0's before 1's)

Grammar for
$$\{0^n 1^n : n \ge 0\}$$

(all strings with same # of 0's and 1's with all 0's before 1's)

$$S \rightarrow 0S1 \mid \epsilon$$

Grammar for $\{0^n 1^n : n \ge 0\}$

(all strings with same # of 0's and 1's with all 0's before 1's)

Grammar for
$$\{0^n 1^n : n \ge 0\}$$

(all strings with same # of 0's and 1's with all 0's before 1's)

$$S \rightarrow 0S1 \mid \epsilon$$

Example: $S \rightarrow (S) \mid SS \mid \varepsilon$

The set of all strings of matched parentheses

Simple Arithmetic Expressions

$$E \rightarrow E + E \mid E \times E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$$

 $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Generate (2*x) + y

Simple Arithmetic Expressions

$$E \rightarrow E + E \mid E \times E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$$

 $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Generate (2*x) + y

$$E \Rightarrow E+E \Rightarrow (E)+E \Rightarrow (E*E)+E \Rightarrow (2*E)+E \Rightarrow (2*x)+E \Rightarrow (2*x)+y$$

Lecture 21 Activity

You will be assigned to breakout rooms. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Consider the CFG (start symbol is E)

$$E \rightarrow E + E \mid E * E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

Example to generate (2*x)+y

$$\mathsf{E} \Rightarrow \mathsf{E} + \mathsf{E} \Rightarrow (\mathsf{E}) + \mathsf{E} \Rightarrow (\mathsf{E} * \mathsf{E}) + \mathsf{E} \Rightarrow (2 * \mathsf{E}) + \mathsf{E} \Rightarrow (2 * \mathsf{x}) + \mathsf{E} \Rightarrow (2 * \mathsf{x}) + \mathsf{E}$$

Find two different ways to generate 2 + 3*4

Fill out the poll everywhere for Activity Credit!

Go to pollev.com/philipmg and login with your UW identity

Lecture 21 Activity

You will be assigned to breakout rooms. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Consider the CFG (start symbol is E)

$$E \rightarrow E + E \mid E * E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

Example to generate (2*x)+y

$$\mathsf{E} \Rightarrow \mathsf{E} + \mathsf{E} \Rightarrow (\mathsf{E}) + \mathsf{E} \Rightarrow (\mathsf{E} * \mathsf{E}) + \mathsf{E} \Rightarrow (2 * \mathsf{E}) + \mathsf{E} \Rightarrow (2 * \mathsf{x}) + \mathsf{E} \Rightarrow (2 * \mathsf{x}) + \mathsf{E}$$

Find two different ways to generate 2 + 3*4

$$E \Rightarrow E + E \Rightarrow 2 + E \Rightarrow 2 + E \Rightarrow 2 + 3 \times E \Rightarrow 2 + 3 \times E$$

$$E \Rightarrow E*E \Rightarrow E+E*E \Rightarrow 2+E*E \Rightarrow 2+3*E \Rightarrow 2+3*4$$

Parse Trees

Suppose that grammar G generates a string x

- A parse tree of x for G has
 - Root labeled S (start symbol of G)
 - The children of any node labeled A are labeled by symbols of w left-to-right for some rule $A \rightarrow w$
 - The symbols of x label the leaves ordered left-to-right

$$S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \epsilon$$

Parse tree of 01110

CFGs and recursively-defined sets of strings

 A CFG with the start symbol S as its only variable recursively defines the set of strings of terminals that S can generate

- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by *each* of its variables
 - Sometimes necessary to use more than one

- E expression (start symbol)
- T term F factor I identifier N number

$$E \rightarrow T \mid E+T$$

$$T \rightarrow F \mid F*T$$

$$F \rightarrow (E) \mid I \mid N$$

$$I \rightarrow X \mid y \mid z$$

$$N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$

- E expression (start symbol)
- T term F factor I identifier N number

$$E \rightarrow T \mid E+T$$

$$T \rightarrow F \mid F*T$$

$$F \rightarrow (E) \mid I \mid N$$

$$I \rightarrow x \mid y \mid z$$

$$N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$

- E expression (start symbol)
- **T** term **F** factor **I** identifier **N** number

$$\begin{array}{c} \mathsf{E} & \to \mathsf{T} \mid \mathsf{E} + \mathsf{T} \\ \mathsf{T} & \to \mathsf{F} \mid \mathsf{F} * \mathsf{T} \\ \mathsf{F} & \to (\mathsf{E}) \mid \mathsf{I} \mid \mathsf{N} \\ \mathsf{I} & \to \mathsf{x} \mid \mathsf{y} \mid \mathsf{z} \end{array} \qquad \begin{array}{c} \mathsf{22} \, \star \, \star \\ \mathsf{3005} \, \star \, \\ \mathsf{3005} \, \star \, \star \\ \mathsf{3005} \, \star \, \star \\ \mathsf{3005} \, \star \, \\ \mathsf{30$$

N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
$$(N//)$$
 | \tag{E}

- E expression (start symbol)
- **T** term **F** factor **I** identifier **N** number

$$E \rightarrow T \mid E+T$$

$$T \rightarrow F \mid F*T$$

$$F \rightarrow (E) \mid I \mid N$$

$$I \rightarrow x \mid y \mid z$$

$$N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$

CFGs and regular expressions

Theorem: For any set of strings (language) A described by a regular expression, there is a CFG that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...

Regular Expressions over Σ

Basis:

- $-\emptyset$, ϵ are regular expressions
- \boldsymbol{a} is a regular expression for any $\boldsymbol{a} \in \Sigma$

Recursive step:

— If A and B are regular expressions then so are:

```
(A ∪ B)
(AB)
A*
```

• CFG to match RE &

$$S \rightarrow \epsilon$$

• CFG to match RE **a** (for any $a \in \Sigma$)

$$\mathbf{S} \rightarrow \mathbf{a}$$

• CFG to match RE &

$$S \rightarrow \epsilon$$

• CFG to match RE **a** (for any $a \in \Sigma$)

$$\mathbf{S} \rightarrow \mathbf{a}$$

Suppose CFG with start symbol **S**₁ matches RE **A** CFG with start symbol **S**₂ matches RE **B**

CFG to match RE A ∪ B

$$S \rightarrow S_1 \mid S_2$$

CFG to match RE AB

$$S \rightarrow S_1 S_2$$

Suppose CFG with start symbol S₁ matches RE A

• CFG to match RE A^* (= $\epsilon \cup A \cup AA \cup AAA \cup ...$)

$$S \rightarrow S_1 S \mid \varepsilon$$

Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

- Originally used to define programming languages
- Variables denoted by long names in angle brackets, e.g.

```
<identifier>, <if-then-else-statement>, <assignment-statement>, <condition> ::= used instead of →
```

BNF for C

```
statement:
  ((identifier | "case" constant-expression | "default") ":")*
  (expression? ";" |
  block |
   "if" "(" expression ")" statement |
   "if" "(" expression ")" statement "else" statement |
   "switch" "(" expression ")" statement |
   "while" "(" expression ")" statement |
   "do" statement "while" "(" expression ")" ";" |
   "for" "(" expression? ";" expression? ";" expression? ")" statement |
   "goto" identifier ";" |
   "continue" ";" |
   "break" ";" |
   "return" expression? ";"
block: "{" declaration* statement* "}"
expression:
  assignment-expression%
assignment-expression: (
    unary-expression (
      "=" | "*=" | "/=" | "8=" | "+=" | "-=" | "<<=" | ">>=" | "&=" |
      "^=" | "|="
  ) * conditional-expression
conditional-expression:
  logical-OR-expression ( "?" expression ":" conditional-expression )?
```

Parse Trees

Back to middle school:

```
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>
```

Parse:

The yellow duck squeaked loudly

The red truck hit a parked car