
CSE 311: Foundations of Computing

Lecture 21: Context-Free Grammars

[Audience looks around]
“What is going on? There must be some context we’re missing”

Recap: Regular expressions are “patterns”

e matches the empty string
a matches the one character string a
A È B matches all strings that either A matches or B matches (or

both)
AB matches all strings that have a first part that A matches

followed by a second part that B matches
A* matches all strings that are concatenations of any number of

strings (even 0) that A matches, (equivalently, A* = e È A È AA
È AAA È ...)

Example: 00 ∪ 01 ∪ 10 ∪ 11 ∗ corresponds to set of even length
binary strings
Fact: Now every language can be described by a regular
expression (i.e. palindromes; proof later in this course)

Context-Free Grammars

• A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving
– A finite set V of variables that can be replaced
– Alphabet S of terminal symbols that can’t be replaced
– One variable, usually S, is called the start symbol

• The rules involving a variable A are written as
A® w1 | w2 | ⋯ | wk

where each wi is a string of variables and terminals –
that is wi ∈ (VÈ S)*

How CFGs generate strings

• Begin with start symbol S

• If there is some variable A in the current string you
can replace it by one of the w’s in the rules for A
– A ® w1 | w2 | ⋯ | wk

– Write this as xAy ⇒ xwy
– Repeat until no variables left

• The set of strings the CFG generates are all strings
produced in this way that have no variables

Example Context-Free Grammars

Example: S ® 0S0 | 1S1 | 0 | 1 | e

Example Context-Free Grammars

Example: S ® 0S0 | 1S1 | 0 | 1 | e

The set of all binary palindromes

Example Context-Free Grammars

Example: S ® 0S0 | 1S1 | 0 | 1 | e

Example: S ® 0S | S1 | e

The set of all binary palindromes

Example Context-Free Grammars

Example: S ® 0S0 | 1S1 | 0 | 1 | e

Example: S ® 0S | S1 | e

The set of all binary palindromes

0*1*

Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

S ® 0S1 | e

Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

Example: S ® (S) | SS | e

S ® 0S1 | e

Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

Example: S ® (S) | SS | e

S ® 0S1 | e

The set of all strings of matched parentheses

Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4
| 5 | 6 | 7 | 8 | 9

Generate (2∗x) + y

Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4
| 5 | 6 | 7 | 8 | 9

Generate (2∗x) + y

E ⇒ E+E⇒	(E)+E⇒ (E∗E)+E⇒ (2∗E)+E⇒ (2∗x)+E⇒ (2∗x)+y

Lecture 21 Activity

Fill out the poll everywhere for Activity Credit!
Go to pollev.com/philipmg and login with your UW
identity

You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share their screen, showing this PDF
• Consider the CFG (start symbol is E)

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
• Example to generate (2*x)+y

• Find two different ways to generate 2 + 3*4

E ⇒ E+E⇒	(E)+E⇒ (E∗E)+E⇒ (2∗E)+E⇒ (2∗x)+E⇒ (2∗x)+y

http://pollev.com/philipmg

Lecture 21 Activity

You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share their screen, showing this PDF
• Consider the CFG (start symbol is E)

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
• Example to generate (2*x)+y

• Find two different ways to generate 2 + 3*4

E ⇒ E+E⇒	(E)+E⇒ (E∗E)+E⇒ (2∗E)+E⇒ (2∗x)+E⇒ (2∗x)+y

E ⇒ E+E⇒ 2+E⇒	2+E∗E⇒ 2+3∗E⇒ 2+3∗4

E ⇒ E∗E⇒	E+E∗E⇒ 2+E∗E⇒ 2+3∗E⇒ 2+3∗4

Parse Trees

Suppose that grammar G generates a string x
• A parse tree of x for G has
– Root labeled S (start symbol of G)
– The children of any node labeled A are labeled by

symbols of w left-to-right for some rule A ® w
– The symbols of x label the leaves ordered left-to-right

S ® 0S0 | 1S1 | 0 | 1 | e

S

0 0S

S1 1

1
Parse tree of 01110

CFGs and recursively-defined sets of strings

• A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals
that S can generate

• A CFG with more than one variable is a
simultaneous recursive definition of the sets of
strings generated by each of its variables
– Sometimes necessary to use more than one

building precedence in simple arithmetic expressions

• E – expression (start symbol)
• T – term F – factor I – identifier N - number

E ® T | E+T
T ® F | F∗T
F ® (E) | I | N
I ® x | y | z
N ® 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

E

+

x

E*

z
y

E E

No longer
allows:

building precedence in simple arithmetic expressions

• E – expression (start symbol)
• T – term F – factor I – identifier N - number

E ® T | E+T
T ® F | F∗T
F ® (E) | I | N
I ® x | y | z
N ® 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

F

+
x

T*

zy

T

?

building precedence in simple arithmetic expressions

• E – expression (start symbol)
• T – term F – factor I – identifier N - number

E ® T | E+T
T ® F | F∗T
F ® (E) | I | N
I ® x | y | z
N ® 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

E

+

x

E

*
zy

E

E

Still
allows:

building precedence in simple arithmetic expressions

• E – expression (start symbol)
• T – term F – factor I – identifier N - number

E ® T | E+T
T ® F | F∗T
F ® (E) | I | N
I ® x | y | z
N ® 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

T

+

x

T

*
zy

E

F

Theorem: For any set of strings (language) 𝐴
described by a regular expression, there is a
CFG that recognizes 𝐴.

Proof idea: Structural induction based on the
recursive definition of regular expressions...

CFGs and regular expressions

Regular Expressions over S

• Basis:
– Æ, ɛ are regular expressions
– a is a regular expression for any a Î S

• Recursive step:
– If A and B are regular expressions then so are:

(A È B)
(AB)

A*

CFGs are more general than REs

• CFG to match RE e

S ® e

• CFG to match RE a (for any 𝑎 Î S)

S ® a

CFGs are more general than REs

• CFG to match RE e

S ® e

• CFG to match RE a (for any 𝑎 Î S)

S ® a

CFGs are more general than REs

Suppose CFG with start symbol S1 matches RE A
CFG with start symbol S2 matches RE B

• CFG to match RE A È B

S ® S1 | S2

• CFG to match RE AB

S ® S1 S2

CFGs are more general than REs

Suppose CFG with start symbol S1 matches RE A

• CFG to match RE A* (= e È A È AA È AAA È ...)

S ® S1 S | e

Backus-Naur Form (The same thing…)

BNF (Backus-Naur Form) grammars
– Originally used to define programming

languages
– Variables denoted by long names in angle

brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
∷= used instead of ®

BNF for C

Parse Trees

Back to middle school:
<sentence>∷=<noun phrase><verb phrase>
<noun phrase>∷==<article><adjective><noun>
<verb phrase>∷=<verb><adverb>|<verb><object>
<object>∷=<noun phrase>

Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

