CSE 311: Foundations of Computing

Lecture 24: Directed Graphs and NFAs

Recap: Finite State Machines (DFAs)

A **DFA** consists of:

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

Example: Strings with an even number of 2's

Recap: Directed Graphs

G = (V, E) V - vertices E - edges, ordered pairs of vertices

Path: $v_0, v_1, ..., v_k$ with each (v_i, v_{i+1}) in E

```
Simple Path: none of v_0, ..., v_k repeated
Cycle: v_0 = v_k
Simple Cycle: v_0 = v_{k_1} none of v_1, ..., v_k repeated
```


Defn: Two vertices in a graph are **connected** iff there is a path between them.

Let **R** be a relation on a set **A**. The **connectivity** relation \mathbf{R}^* consists of the pairs (a,b) such that there is a path from a to b in **R**.

Note: The text uses the wrong definition of this quantity. What the text defines (ignoring k=0) is usually called R⁺

How Properties of Relations show up in Graphs

Let R be a relation on A.

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$

R is **symmetric** iff $(a,b) \in R$ implies $(b, a) \in R$

R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

R is **transitive** iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Transitive-Reflexive Closure

Add the **minimum possible** number of edges to make the relation transitive and reflexive.

The **transitive-reflexive closure** of a relation R is the connectivity relation R^*

Transitive-Reflexive Closure

Relation with the **minimum possible** number of **extra edges** to make the relation both transitive and reflexive.

The **transitive-reflexive closure** of a relation *R* is the connectivity relation *R**

Let $A_1, A_2, ..., A_n$ be sets. An *n*-ary relation on these sets is a subset of $A_1 \times A_2 \times \cdots \times A_n$.

Example application: Database theory

Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Von Neuman	481080220	555	3.78
Russell	238082388	022	3.85
Einstein	238001920	022	2.11
Newton	1727017	333	3.61
Karp	348882811	022	3.98
Bernoulli	2921938	022	3.21

Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state
 labeled by each symbol— can have 0 or >1
 - Also can have edges labeled by empty string $\boldsymbol{\epsilon}$
- Definition: x is in the language recognized by an NFA if and only if <u>some</u> valid execution of the machine gets to an accept state

Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state
 labeled by each symbol— can have 0 or >1
 - Also can have edges labeled by empty string $\boldsymbol{\epsilon}$
- Definition: x is in the language recognized by an NFA if and only if <u>some</u> valid execution of the machine gets to an accept state

Recognized language: $(0 \cup 1)^* 111(0 \cup 1)^*$ as **RE**

Consider This NFA

What language does this NFA accept?

Consider This NFA

What language does this NFA accept?

10(10)* U 111 (0 U 1)*

Strings over {0,1,2} w/even # of 2's OR sum to 0 mod 3

Lecture 24 Activity

- You will be assigned to **breakout rooms**. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF

Construct an NFA for the set of binary strings with a 1 in the 3^{rd} position from the end

Fill out a poll everywhere for Activity Credit! Go to pollev.com/thomas311 and login with your UW identity

Compare with the smallest DFA

- Many different FSMs (DFAs) for the same problem
- Take a given FSM and try to reduce its state set by combining states
 - Algorithm will always produce the unique minimal equivalent machine (up to renaming of states) but we won't prove this

State Minimization Algorithm

- 1. Put states into groups based on their outputs (or whether they are final states or not)
- 2. Repeat the following until no change happens
 - a. If there is a symbol s so that not all states in a group
 G agree on which group s leads to, split G into smaller
 groups based on which group the states go to on s

3. Finally, convert groups to states

present	l r	next s	output					
state	0	1	2	3				
SO	S0	S1	S2	S3	1			
S1	SO	S3	S1	S5	0			
S2	S1	S3	S2	S4	1			
S3	S1	S0	S4	S5	0			
S4	SO	S1	S2	S5	1			
S5	S1	S4	S0	S5	0			
state								

transition table

Put states into groups based on their outputs (or whether they are final states or not)

	next	output		
0	1	2	3	
SO	S1	S2	S3	1
SO	S3	S1	S5	0
S1	S3	S2	S4	1
S1	SO	S4	S5	0
SO	S1	S2	S5	1
S1	S4	S0	S5	0
	0 S0 S1 S1 S0 S1	next 0 1 50 51 50 53 51 53 51 50 50 51 51 54	next stat012S0S1S0S3S1S3S1S3S1S0S4S0S1S4S0S4S1S4	next state0123S0S1S2S3S0S3S1S5S1S3S2S4S1S0S4S5S0S1S2S5S1S4S0S5

state transition table

Put states into groups based on their outputs (or whether they are final states or not)

present		next	output		
state	0	1	2	3	-
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0
	-				-

state transition table

Put states into groups based on their outputs (or whether they are final states or not)

present		next	output		
state	0	1	2	3	
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0
	-				-

state transition table

Put states into groups based on their outputs (or whether they are final states or not)

present	l i	next	output		
state	0	1	2	3	-
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

Put states into groups based on their outputs (or whether they are final states or not)

present		next	output		
state	0	1	2	3	
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

Put states into groups based on their outputs (or whether they are final states or not)

present		next	output		
state	0	1	2	3	
SO	S0	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

Put states into groups based on their outputs (or whether they are final states or not)

present		next	output		
state	0	1	2	3	
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
<mark>S2</mark>	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	SO	S5	0

state transition table

Finally convert groups to states:

Can combine states S0-S4 and S3-S5.

In table replace all S4 with S0 and all S5 with S3

Minimized Machine

present	I	next	output				
state	0	1	2	3			
SO	SO	S1	S2	S3	1		
S1	SO	S3	S1	S3	0		
S2	S1	S3	S2	SO	1		
S3	S1	SO	SO	S3	0		
state							
transition table							

A Simpler Minimization Example

A Simpler Minimization Example

Split states into final/non-final groups

Every symbol causes the DFA to go from one group to the other so neither group needs to be split

Minimized DFA

Partial Correctness of Minimization Algorithm

- Prove this claim: after processing input x, if the old machine was in state q, then the new machine is in the state S with $q \in S$
 - True after 0 characters processed
 - If true after k characters processed,
 then it's true after k+1 characters processed:

By inductive hypothesis, after k steps, old machine is in state q and new one in state S with $q \in S$

By construction, every $r \in S$ is taken to the same state S'on input x_{k+1} , so q is taken to some $q' \in S'$.

 At end, since every r ∈ S is accepting or rejecting, new machine gives correct answer.

Another way to look at DFAs

Definition: The label of a path in a DFA is the concatenation of all the labels on its edges in order

Lemma: x is in the language recognized by a DFA iff x labels a path from the start state to some final state

