CSE 311: Foundations of Computing

Lecture 24: Directed Graphs and NFAs

Recap: Finite State Machines (DFAs)

A DFA consists of:

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

Example: Strings with an even number of 2's

Recap: Directed Graphs

$\begin{array}{ll}\mathrm{G}=(\mathrm{V}, \mathrm{E}) & \mathrm{V}-\text { vertices } \\ \mathrm{E}-\text { edges, ordered pairs of vertices }\end{array}$
Path: $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ with each $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{0}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated Cycle: $\mathbf{v}_{0}=\mathbf{v}_{\mathbf{k}}$
Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated

Connectivity In Graphs

Defn: Two vertices in a graph are connected iff there is

 a path between them.Let \boldsymbol{R} be a relation on a set \boldsymbol{A}. The connectivity relation \boldsymbol{R}^{*} consists of the pairs (a, b) such that there is a path from a to b in \boldsymbol{R}.

Note: The text uses the wrong definition of this quantity. What the text defines (ignoring $k=0$) is usually called \mathbf{R}^{+}

How Properties of Relations show up in Graphs

Let R be a relation on A.
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Transitive-Reflexive Closure

Add the minimum possible number of edges to make the relation transitive and reflexive.

The transitive-reflexive closure of a relation \boldsymbol{R} is the connectivity relation \boldsymbol{R}^{*}

Transitive-Reflexive Closure

Relation with the minimum possible number of extra edges to make the relation both transitive and reflexive.

The transitive-reflexive closure of a relation \boldsymbol{R} is the connectivity relation \boldsymbol{R}^{*}

n-ary Relations

Let $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{\boldsymbol{n}}$ be sets. An \boldsymbol{n}-ary relation on these sets is a subset of $\boldsymbol{A}_{\mathbf{1}} \times \boldsymbol{A}_{\mathbf{2}} \times \cdots \times \boldsymbol{A}_{\boldsymbol{n}}$.

Example application: Database theory

Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Von Neuman	481080220	555	3.78
Russell	238082388	022	3.85
Einstein	238001920	022	2.11
Newton	1727017	333	3.61
Karp	348882811	022	3.98
Bernoulli	2921938	022	3.21

Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
- Not required to have exactly 1 edge out of each state labeled by each symbol- can have 0 or >1
- Also can have edges labeled by empty string ε
- Definition: x is in the language recognized by an NFA if and only if some valid execution of the machine gets to an accept state

Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
- Not required to have exactly 1 edge out of each state labeled by each symbol- can have 0 or >1
- Also can have edges labeled by empty string ε
- Definition: x is in the language recognized by an NFA if and only if some valid execution of the machine gets to an accept state

Recognized language: $(0 \cup 1)^{*} 111(0 \cup 1)^{*}$ as RE

Consider This NFA

What language does this NFA accept?

Consider This NFA

What language does this NFA accept?

$$
10(10)^{*} \cup 111(0 \cup 1)^{*}
$$

NFA e-moves

NFA ε-moves
Strings over \{0,1,2\} w/even \# of 2's OR sum to $0 \bmod 3$

Lecture 24 Activity

- You will be assigned to breakout rooms. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF

Construct an NFA for the set of binary strings with a 1 in the $3^{\text {rd }}$ position from the end

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login with your UW identity

Compare with the smallest DFA

State Minimization

- Many different FSMs (DFAs) for the same problem
- Take a given FSM and try to reduce its state set by combining states
- Algorithm will always produce the unique minimal equivalent machine (up to renaming of states) but we won't prove this

State Minimization Algorithm

1. Put states into groups based on their outputs (or whether they are final states or not)
2. Repeat the following until no change happens
a. If there is a symbol s so that not all states in a group G agree on which group s leads to, split G into smaller groups based on which group the states go to on s

3. Finally, convert groups to states

State Minimization Example

present state	next state				output
S0	S0	S1	S2	S3	
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Put states into groups based on their outputs (or whether they are final states or not)

State Minimization Example

present state	0	1	2	3	output
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Put states into groups based on their outputs (or whether they are final states or not)

State Minimization Example

present state	0	1	2	3	
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Put states into groups based on their outputs (or whether they are final states or not)

If there is a symbol s so that not all states in a group G agree on which group s leads to, split G based on which group the states go to on s

State Minimization Example

present state	0	1	2	3	output
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Put states into groups based on their outputs (or whether they are final states or not)

If there is a symbol s so that not all states in a group G agree on which group s leads to, split G based on which group the states go to on s

State Minimization Example

present state	0	1	2	3	
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Put states into groups based on their outputs (or whether they are final states or not)

If there is a symbol s so that not all states in a group G agree on which group s leads to, split G based on which group the states go to on s

State Minimization Example

present state	0	1	2	3	
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Put states into groups based on their outputs (or whether they are final states or not)

If there is a symbol s so that not all states in a group G agree on which group s leads to, split G based on which group the states go to on s

State Minimization Example

present state	0	1	2	3	output
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Put states into groups based on their outputs (or whether they are final states or not)

If there is a symbol s so that not all states in a group G agree on which group s leads to, split G based on which group the states go to on s

State Minimization Example

present state	0	1	2	3	
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Finally convert groups to states:
Can combine states S0-S4 and S3-S5.

In table replace all S4 with S0 and all S5 with S3

Minimized Machine

A Simpler Minimization Example

A Simpler Minimization Example

Split states into
final/non-final groups

Every symbol causes the DFA to go from one group to the other so neither group needs to be split

Minimized DFA

Partial Correctness of Minimization Algorithm

- Prove this claim: after processing input x, if the old machine was in state q, then the new machine is in the state S with $q \in S$
- True after 0 characters processed
- If true after k characters processed, then it's true after k+1 characters processed:
By inductive hypothesis, after k steps, old machine is in state q and new one in state S with $q \in S$
By construction, every $r \in S$ is taken to the same state S^{\prime} on input x_{k+1}, so q is taken to some $q^{\prime} \in S^{\prime}$.
- At end, since every $r \in S$ is accepting or rejecting, new machine gives correct answer.

Another way to look at DFAs

Definition: The label of a path in a DFA is the concatenation of all the labels on its edges in order

Lemma: x is in the language recognized by a DFA iff x labels a path from the start state to some final state

