
CSE 311: Foundations of Computing

Lecture 24: Directed Graphs and NFAs

Recap: Finite State Machines (DFAs)

Example: Strings with an even number of 2’s

s0 s1

2 0,10,1

2

A DFA consists of:
• States
• Transitions on input symbols
• Start state and final states
• The “language recognized” by the machine is the

set of strings that reach a final state from the start

Recap: Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges, ordered pairs of vertices

Connectivity In Graphs

Let 𝑹 be a relation on a set 𝑨. The connectivity
relation 𝑹∗ consists of the pairs (𝑎,𝑏) such that there is
a path from 𝑎 to 𝑏 in 𝑹.

Note: The text uses the wrong definition of this quantity.
What the text defines (ignoring k=0) is usually called R+

Defn: Two vertices in a graph are connected iff there is
a path between them.

How Properties of Relations show up in Graphs

Let R be a relation on A.

R is reflexive iff (a,a) Î R for every a Î A

R is symmetric iff (a,b) Î R implies (b, a)Î R

R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R

Transitive-Reflexive Closure

Add the minimum possible number of edges to make the
relation transitive and reflexive.

The transitive-reflexive closure of a relation 𝑹 is the
connectivity relation 𝑹*

Transitive-Reflexive Closure

Relation with the minimum possible number of extra edges to
make the relation both transitive and reflexive.

The transitive-reflexive closure of a relation 𝑹 is the
connectivity relation 𝑹*

𝑛-ary Relations

Let 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏 be sets. An 𝒏-ary relation on
these sets is a subset of 𝑨𝟏´𝑨𝟐´⋯ ´ 𝑨𝒏.

Example application: Database theory

Student_Name ID_Number Office GPA

Knuth 328012098 022 4.00

Von Neuman 481080220 555 3.78

Russell 238082388 022 3.85

Einstein 238001920 022 2.11

Newton 1727017 333 3.61

Karp 348882811 022 3.98

Bernoulli 2921938 022 3.21

Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled
by symbols (like DFA) but
– Not required to have exactly 1 edge out of each state

labeled by each symbol--- can have 0 or >1
– Also can have edges labeled by empty string ε

• Definition: x is in the language recognized by an
NFA if and only if some valid execution of the
machine gets to an accept state

s0 s2 s3s1
111

0,10,1

Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled
by symbols (like DFA) but
– Not required to have exactly 1 edge out of each state

labeled by each symbol--- can have 0 or >1
– Also can have edges labeled by empty string ε

• Definition: x is in the language recognized by an
NFA if and only if some valid execution of the
machine gets to an accept state

s0 s2 s3s1
111

0,10,1

Recognized language: 0 ∪ 1 ∗111 0 ∪ 1 ∗ as RE

Consider This NFA

What language does this NFA accept?

s0

s1

s5s4

1

1

1

0

1

s2 s3
1

0,1

Consider This NFA

What language does this NFA accept?

s0

s1

s5s4

1

1

1

0

1

s2 s3
1

0,1

10(10)* ⋃ 111 (0 ⋃ 1)*

NFA ε-moves

s0 s1

t0 t2

t1

2 0,10,1

2

0

0

0 1 1

1

2 2

2

q

ε

ε

NFA ε-moves

s0 s1

t0 t2

t1

2 0,10,1

2

0

0

0 1 1

1

2 2

2

q

ε

ε

Strings over {0,1,2} w/even # of 2’s OR sum to 0 mod 3

Lecture 24 Activity
• You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share screen, showing this PDF

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login
with your UW identity

Construct an NFA for the set of binary strings with a 1 in the
3rd position from the end

http://pollev.com/thomas311

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

Compare with the smallest DFA
0,1

s3 s2 s1 s0
0,1 0,11

State Minimization

• Many different FSMs (DFAs) for the same
problem

• Take a given FSM and try to reduce its state
set by combining states
– Algorithm will always produce the unique

minimal equivalent machine (up to renaming of
states) but we won’t prove this

State Minimization Algorithm

1. Put states into groups based on their outputs (or
whether they are final states or not)

2. Repeat the following until no change happens
a. If there is a symbol s so that not all states in a group

G agree on which group s leads to, split G into smaller
groups based on which group the states go to on s

3. Finally, convert groups to states

G1

G2

G3

s
s

s

s

G10
G2

G3

s
s

s

s
G11

State Minimization Example

state
transition table

present next state output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their
outputs (or whether they are final states
or not)

State Minimization Example

state
transition table

present next state output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 02

1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their
outputs (or whether they are final states
or not)

State Minimization Example

state
transition table

present next state output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 02

1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their
outputs (or whether they are final states
or not)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go
to on s

State Minimization Example

state
transition table

present next state output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 02

1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their
outputs (or whether they are final states
or not)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go
to on s

State Minimization Example

state
transition table

present next state output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 02

1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their
outputs (or whether they are final states
or not)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go
to on s

State Minimization Example

state
transition table

present next state output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 02

1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their
outputs (or whether they are final states
or not)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go
to on s

State Minimization Example

state
transition table

present next state output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 02

1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their
outputs (or whether they are final states
or not)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go
to on s

State Minimization Example

state
transition table

present next state output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 02

1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Finally convert groups to states:

Can combine states S0-S4 and
S3-S5.

In table replace all S4 with S0
and all S5 with S3

Minimized Machine

state
transition table

present next state output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S3 0
S2 S1 S3 S2 S0 1
S3 S1 S0 S0 S3 0

2
1

3

0

0

1

3

2

2
0

0

3

1,2

S0
[1]

S2
[1]

S1
[0]

S3
[0]

1,3

A Simpler Minimization Example

s0

s2 s3

s1
1

1

1

1

0

0

0

0

A Simpler Minimization Example

s0

s2 s3

s1
1

1

1

1

0

0

0

0

Split states into
final/non-final groups

Every symbol causes
the DFA to go from one
group to the other so
neither group needs to
be split

Minimized DFA

s0
s3

s1
s2

0,1

0,1

Partial Correctness of Minimization Algorithm

• Prove this claim: after processing input 𝑥,
if the old machine was in state 𝑞,
then the new machine is in the state 𝑆 with 𝑞 ∈ 𝑆
– True after 0 characters processed
– If true after k characters processed,

then it’s true after k+1 characters processed:
By inductive hypothesis, after k steps, old machine is in
state 𝑞 and new one in state 𝑆 with 𝑞 ∈ 𝑆
By construction, every 𝑟 ∈ 𝑆 is taken to the same state 𝑆′
on input 𝑥#$%, so 𝑞 is taken to some 𝑞′ ∈ 𝑆′.

• At end, since every 𝑟 ∈ 𝑆 is accepting or rejecting,
new machine gives correct answer.

Another way to look at DFAs

s0 s2 s3s1
111

0,1

0

0

0

Lemma: x is in the language recognized by a DFA iff
x labels a path from the start state to some final state

Definition: The label of a path in a DFA is the
concatenation of all the labels on its edges in order

