CSE 311: Foundations of Computing

Lecture 26: From NFAs to DFAs and from NFAs to REs

Recap: Concepts to describe languages

REs
 $\subseteq \quad$ CFGs

DFAs

 $\subseteq \quad$ NFAsRegular expression: $(0 \cup 1)^{*} 1(0 \cup 1)(0 \cup 1)$

DFA:

NFA:

NFAs and DFAs

Every DFA is an NFA

- DFAs have requirements that NFAs don't have

Can NFAs recognize more languages?

NFAs and DFAs

Every DFA is an NFA

- DFAs have requirements that NFAs don't have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language

Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel

Parallel Exploration view of an NFA

Input string 0101100

Conversion of NFAs to a DFAs

- Proof Idea:
- The DFA keeps track of ALL the states that the part of the input string read so far can reach in the NFA
- There will be one state in the DFA for each subset of states of the NFA that can be reached by some string

Conversion of NFAs to a DFAs

New start state for DFA

- The set of all states reachable from the start state of the NFA using only edges labeled ε

NFA

DFA

Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of states of the NFA and each symbol s

- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
- starting from some state in S, then
- following one edge labeled by s, and then following some number of edges labeled by ε
- T will be \varnothing if no edges from S labeled s exist

Conversion of NFAs to a DFAs

Final states for the DFA

- All states whose set contain some final state of the NFA

NFA

DFA

Example: NFA to DFA

NFA
DFA

Example: NFA to DFA

DFA

Example: NFA to DFA

DFA

Example: NFA to DFA

DFA

Example: NFA to DFA

DFA

Example: NFA to DFA

DFA

Example: NFA to DFA

Example: NFA to DFA

Exponential Blow-up in Simulating Nondeterminism

- In general the DFA might need a state for every subset of states of the NFA
- Power set of the set of states of the NFA
- n-state NFA yields DFA with at most 2^{n} states
- We saw an example where roughly 2^{n} is necessary "Is the $\boldsymbol{n}^{\text {th }}$ char from the end a 1 ?"
- The famous " $\mathrm{P}=\mathrm{NP}$?" question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms

The story so far...

Regular expressions \subseteq NFAs \equiv DFAs

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Regular expressions \equiv NFAs \equiv DFAs

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Theorem: A language is recognized by a DFA (or NFA) if and only if it has a regular expression

You need to know this fact but we won't ask you anything about the "only if" direction from DFA/NFA to regular expression. For fun, we sketch the idea.

Generalized NFAs

- Like NFAs but allow
- Parallel edges
- Regular Expressions as edge labels

NFAs already have edges labeled ε or \boldsymbol{a}

- An edge labeled by A can be followed by reading a string of input chars that is in the language represented by A
- Defn: A string x is accepted iff there is a path from start to final state labeled by a regular expression whose language contains x

Starting from an NFA

Add new start state and final state

Then eliminate original states one by one, keeping the same language, until it looks like:

Final regular expression will be A

Only two simplification rules

- Rule 1: For any two states q_{1} and q_{2} with parallel edges (possibly $q_{1}=q_{2}$), replace

?
- Rule 2: Eliminate non-start/final state q_{3} by replacing all

for every pair of states q_{1}, q_{2} (even if $q_{1}=q_{2}$)

Lecture 26 Activity

- You will be assigned to breakout rooms. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF
- We are considering Generalized NFAs where we allow parallel edges and edges may be labelled with regular expressions.
- Our overall goal is to transform an arbitrary such generalized NFA into one that only has a single edge.
- Complete the following rule! Why does it work?

Rule 1: For any two states q_{1} and q_{2} with parallel
edges (possibly $q_{1}=q_{2}$), replace

?

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login with your UW identity

Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

- Accept strings from $\{0,1,2\}^{*}$ where the digits $\bmod 3$ sum of the digits is 0

Splicing out a state t_{1}

Regular expressions to add to edges

$$
\begin{array}{ll}
\mathrm{t}_{0} \rightarrow \mathrm{t}_{1} \rightarrow \mathrm{t}_{0}: & 10^{*} 2 \\
\mathrm{t}_{0} \rightarrow \mathrm{t}_{1} \rightarrow \mathrm{t}_{2}: & 10^{*} 1 \\
\mathrm{t}_{2} \rightarrow \mathrm{t}_{1} \rightarrow \mathrm{t}_{0}: & 20^{*} 2 \\
\mathrm{t}_{2} \rightarrow \mathrm{t}_{1} \rightarrow \mathrm{t}_{2}: & 20^{*}
\end{array}
$$

Splicing out a state t_{1}

Regular expressions to add to edges

$$
\begin{array}{ll}
\mathrm{t}_{0} \rightarrow \mathrm{t}_{1} \rightarrow \mathrm{t}_{0}: & 10^{*} 2 \\
\mathrm{t}_{0} \rightarrow \mathrm{t}_{1} \rightarrow \mathrm{t}_{2}: & 10^{*} 1 \\
\mathrm{t}_{2} \rightarrow \mathrm{t}_{1} \rightarrow \mathrm{t}_{0}: & 20^{*} 2 \\
\mathrm{t}_{2} \rightarrow \mathrm{t}_{1} \rightarrow \mathrm{t}_{2}: & 20^{*}
\end{array}
$$

Splicing out state t_{2} (and then t_{0})

$\mathrm{R}_{1}: 0 \cup 10^{*} 2$
$\mathrm{R}_{2}: 2 \cup 10^{*} 1$
$\mathrm{R}_{3}: 1 \cup 20^{*} 2$
$\mathrm{R}_{4}: 0 \cup 20^{*} 1$
$\mathrm{R}_{5}: \mathrm{R}_{1} \cup \mathrm{R}_{2} \mathrm{R}_{4}{ }^{*} \mathrm{R}_{3}$

Final regular expression: $\mathrm{R}_{5}{ }^{*}=$
$\left(0 \cup 10 * 2 \cup(2 \cup 10 * 1)\left(0 \cup 20^{*} 1\right)^{*}\left(1 \cup 20^{*} 2\right)\right)^{*}$

The story so far...

What languages have DFAs? CFGs?

All of them?

Languages and Representations!

Languages and Representations!

DFAs Recognize Any Finite Language

DFAs Recognize Any Finite Language

Construct a DFA for each string in the language.

Then, put them together using the union construction.

Languages and Machines!

An Interesting Infinite Regular Language

$L=\left\{x \in\{0,1\}^{*}: x\right.$ has an equal number of substrings 01 and 10$\}$.

L is infinite.
$0,00,000, \ldots$
L is regular. How could this be?
That seems to require comparing counts...

- easy for a CFG (see section: strings with equal \# of 0s and 1s)
- but seems hard for DFAs!

An Interesting Infinite Regular Language

$L=\left\{x \in\{0,1\}^{*}: x\right.$ has an equal number of substrings 01 and 10$\}$.

L is infinite.
$0,00,000, \ldots$
L is regular. How could this be? It is just the set of binary strings that are empty or begin and end with the same character!

Languages and Representations!

