CSE 311: Foundations of Computing

Lecture 26: From NFAs to DFAs and from NFAs to REs

Recap: Concepts to describe languages

Regular expression: $(0 \cup 1)^* 1(0 \cup 1)(0 \cup 1)$

DFA:

NFA:

Every DFA is an NFA

- DFAs have requirements that NFAs don't have

Can NFAs recognize more languages?

Every DFA is an NFA

- DFAs have requirements that NFAs don't have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language

Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel

Parallel Exploration view of an NFA

Input string 0101100

Conversion of NFAs to a DFAs

- Proof Idea:
 - The DFA keeps track of ALL the states that the part of the input string read so far can reach in the NFA
 - There will be one state in the DFA for each subset of states of the NFA that can be reached by some string

New start state for DFA

– The set of all states reachable from the start state of the NFA using only edges labeled ϵ

NFA

DFA

For each state of the DFA corresponding to a set S of states of the NFA and each symbol s

- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
 - \cdot starting from some state in S, then
 - · following one edge labeled by s, and
 - then following some number of edges labeled by $\boldsymbol{\epsilon}$
- T will be \emptyset if no edges from S labeled s exist

$$b,e,f$$
 1 c,d,e,g

Final states for the DFA

 All states whose set contain some final state of the NFA

NFA

DFA

NFA

NFA

NFA

- In general the DFA might need a state for every subset of states of the NFA
 - Power set of the set of states of the NFA
 - *n*-state NFA yields DFA with at most 2^n states
 - We saw an example where roughly 2^n is necessary "Is the n^{th} char from the end a 1?"
- The famous "P=NP?" question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Theorem: A language is recognized by a DFA (or NFA) if and only if it has a regular expression

You need to know this fact but we won't ask you anything about the "only if" direction from DFA/NFA to regular expression. For fun, we sketch the idea.

- Like NFAs but allow
 - Parallel edges
 - Regular Expressions as edge labels
 NFAs already have edges labeled ε or *a*
- An edge labeled by A can be followed by reading a string of input chars that is in the language represented by A
- Defn: A string x is accepted iff there is a path from start to final state labeled by a regular expression whose language contains x

Add new start state and final state

Then eliminate original states one by one, keeping the same language, until it looks like:

Final regular expression will be A

Only two simplification rules

 Rule 1: For any two states q₁ and q₂ with parallel edges (possibly q₁=q₂), replace

 Rule 2: Eliminate non-start/final state q₃ by replacing all

$$(q_1)$$
 $\xrightarrow{\mathbf{A}} (q_3)$ $\xrightarrow{\mathbf{C}} (q_2)$ by (q_1) $\xrightarrow{\mathbf{AB*C}} (q_2)$

for every pair of states q_1 , q_2 (even if $q_1=q_2$)

Lecture 26 Activity

- You will be assigned to **breakout rooms**. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF
- We are considering Generalized NFAs where we allow parallel edges and edges may be labelled with regular expressions.
- Our overall goal is to transform an arbitrary such generalized NFA into one that only has a single edge.
- Complete the following rule! Why does it work?

Rule 1: For any two states q_1 and q_2 with parallel edges (possibly $q_1=q_2$), replace

Fill out a poll everywhere for Activity Credit! Go to pollev.com/thomas311 and login with your UW identity

Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

 Accept strings from {0,1,2}* where the digits mod 3 sum of the digits is 0

Regular expressions to add to edges

 $t_0 \rightarrow t_1 \rightarrow t_0: 10*2$ $t_0 \rightarrow t_1 \rightarrow t_2: 10*1$ $t_2 \rightarrow t_1 \rightarrow t_0: 20*2$ $t_2 \rightarrow t_1 \rightarrow t_2: 20*1$

Regular expressions to add to edges

 $t_0 \rightarrow t_1 \rightarrow t_0: 10*2$ $t_0 \rightarrow t_1 \rightarrow t_2: 10*1$ $t_2 \rightarrow t_1 \rightarrow t_0: 20*2$ $t_2 \rightarrow t_1 \rightarrow t_2: 20*1$

Splicing out state t₂ (and then t₀)

Final regular expression: $R_5^* = (0 \cup 10^*2 \cup (2 \cup 10^*1)(0 \cup 20^*1)^*(1 \cup 20^*2))^*$

The story so far...

What languages have DFAs? CFGs?

All of them?

Languages and Representations!

Languages and Representations!

DFAs Recognize Any Finite Language

Construct a DFA for each string in the language.

Then, put them together using the union construction.

Languages and Machines!

 $L = {x \in {0, 1}}^*: x has an equal number of substrings 01 and 10}.$

L is infinite.

0, 00, 000, ...

L is regular. How could this be?

That seems to require comparing counts...

- easy for a CFG (see <u>section</u>: strings with equal # of 0s and 1s)
- but seems hard for DFAs!

 $L = {x \in {0, 1}}^*: x has an equal number of substrings 01 and 10}.$

L is infinite. 0, 00, 000, ...

L is regular. How could this be? It is just the set of binary strings that are empty or begin and end with the same character!

Languages and Representations!

