
CSE 311: Foundations of Computing

Lecture 26:   From NFAs to DFAs and from NFAs to REs



Recap: Concepts to describe languages

Regular expression: 0 ∪ 1 ∗1(0 ∪ 1)(0 ∪ 1)

NFA: 

001 011

111

110

101010000

100

1

11 0 1
1

1

1

00 0 1
0

0

00

0,1

s3 s2 s1 s00,1 0,11

DFA: 

⊆

⊆

REs

DFAs NFAs

CFGs
⊆



NFAs and DFAs

Every DFA is an NFA
– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?



NFAs and DFAs

Every DFA is an NFA
– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?   No!

Theorem:  For every NFA there is a DFA that 
recognizes exactly the same language



Three ways of thinking about NFAs

• Outside observer:  Is there a path labeled by x from 
the start state to some final state?  

• Perfect guesser: The NFA has input x and whenever 
there is a choice of what to do it magically guesses a 
good one (if one exists)

• Parallel exploration:  The NFA computation runs all 
possible computations on x step-by-step at the same 
time in parallel



0,1

s3 s2 s1 s0
0,1 0,11

Parallel Exploration view of an NFA

Input string  0101100

s3 s3 s3 s3 s3 s3 s3

0 1 0 1 1 0 0

s2 s1 s0

s2 s1 s0

s2 s1 s0

s3

X

X



Conversion of NFAs to a DFAs

• Proof Idea:
– The DFA keeps track of ALL the states that the 

part of the input string read so far can reach in 
the NFA

– There will be one state in the DFA for each 
subset of states of the NFA that can be reached 
by some string



Conversion of NFAs to a DFAs

New start state for DFA
– The set of all states reachable from the start 

state of the NFA using only edges labeled ɛ

a,b,e,f

f

e

ba
ɛ

ɛ

ɛ

NFA DFA



Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of 
states of the NFA and each symbol s
– Add an edge labeled s to state corresponding to T, the 

set of states of the NFA reached by 
· starting from some state in S, then
· following one edge labeled by s, and
then following some number of edges labeled by ɛ

– T will be Æ if no edges from S labeled s exist

f

e

b

ɛ

ɛ
c

d

g
ɛ

1

1

1

1

b,e,f c,d,e,g1



Conversion of NFAs to a DFAs

Final states for the DFA
– All states whose set contain some final state of 

the NFA

a,b,c,e
ce

ba

NFA DFA



Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

DFA



Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA



Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c 

1



Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c 

1

b 

b,c

1

0



Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c 

1

b 

b,c

1

0

Æ

10



Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c 

1

b 

b,c

1

0

Æ

1

0,1

0



Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c 

1

b 

b,c

1

0

a,b,c

Æ

1

0,1

0

0

1



Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c 

1

b 

b,c

1

0

a,b,c

Æ

1

0,1

0

0

1

1
0



Exponential Blow-up in Simulating Nondeterminism

• In general the DFA might need a state for every 
subset of states of the NFA
– Power set of the set of states of the NFA
– 𝒏-state NFA yields DFA with at most 𝟐𝒏 states
– We saw an example where roughly 𝟐𝒏 is necessary

“Is the 𝒏th char from the end a 1?”

• The famous “P=NP?” question asks whether a 
similar blow-up is always necessary to get rid 
of nondeterminism for polynomial-time 
algorithms



The story so far...

⊆

≡

REs

DFAs NFAs

CFGs

⊆



Regular expressions ⊆ NFAs ≡ DFAs

We have shown how to build an optimal DFA for every 
regular expression
– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA



Regular expressions ≡ NFAs ≡ DFAs

We have shown how to build an optimal DFA for every 
regular expression
– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA

Theorem:  A language is recognized by a DFA (or NFA) 
if and only if it has a regular expression

You need to know this fact but we won’t ask you anything 
about the “only if” direction from DFA/NFA to regular 
expression.  For fun, we sketch the idea.  



Generalized NFAs 

• Like NFAs but allow
– Parallel edges
– Regular Expressions as edge labels

NFAs already have edges labeled ɛ or a

• An edge labeled by A can be followed by reading a 
string of input chars that is in the language 
represented by A

• Defn: A string x is accepted iff there is a path from 
start to final state labeled by a regular expression
whose language contains x



Starting from an NFA

Add new start state and final state

ɛ

ɛ

ɛ

A

Then eliminate original states one by one, 
keeping the same language, until it looks 
like:

Final regular expression will be A



Only two simplification rules

• Rule 1:  For any two states q1 and q2 with parallel 
edges (possibly q1=q2), replace

• Rule 2: Eliminate non-start/final state q3 by 
replacing all

for every pair of states q1, q2 (even if q1=q2)

q1 q2

A

B
by ?

A
B

C AB*Cq1 q3 q2 q1 q2by



Lecture 26 Activity
• You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share screen, showing this PDF 
• We are considering Generalized NFAs where we allow parallel edges 

and edges may be labelled with regular expressions. 
• Our overall goal is to transform an arbitrary such generalized NFA into 

one that only has a single edge. 
• Complete the following rule! Why does it work?

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login 
with your UW identity

q1 q2

A

B
by ?

Rule 1:  For any two states q1 and q2 with parallel 
edges (possibly q1=q2), replace

http://pollev.com/thomas311


Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum
– Accept strings from {0,1,2}* where the digits 

mod 3 sum of the digits is 0

t0 t2

t1

0

0
0

1 1

1

2

22



Splicing out a state t1

Regular expressions to add to edges

t0 t2

t1

0

0

1 1

1

2

22

t0→t1→t0 :   10*2
t0→t1→t2 :   10*1
t2→t1→t0 :   20*2
t2→t1→t2 :   20*1

0

s
ɛ

f

ɛ



Splicing out a state t1

Regular expressions to add to edges

t0 t2

0 ∪ 20*1
2 ∪ 10*1

t0→t1→t0 :   10*2
t0→t1→t2 :   10*1
t2→t1→t0 :   20*2
t2→t1→t2 :   20*1

0 ∪ 10*2

s
ɛ

f

ɛ
1 ∪ 20*2



Splicing out state t2 (and then t0)

t0 t2
R1

R1:   0 ∪ 10*2
R2:   2 ∪ 10*1
R3:   1 ∪ 20*2
R4:   0 ∪ 20*1

R5:   R1 ∪ R2R4*R3

R4R2

R3

Final regular expression: R5*=
(0 ∪ 10*2 ∪ (2 ∪	10*1)(0 ∪ 20*1)*(1 ∪	20*2))*

f
ɛ

s
ɛ

t0
R5 f

ɛ

s
ɛ



The story so far...

⊆

≡

REs

DFAs NFAs

CFGs

≡



What languages have DFAs?  CFGs?

All of them?



Languages and Representations!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA
NFA

Regex



Languages and Representations!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA
NFA

Regex

Warmup:
All finite 
languages 
are regular.



DFAs Recognize Any Finite Language



DFAs Recognize Any Finite Language

Construct a DFA for each string in the language.

Then, put them together using the union construction.



Languages and Machines!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA
NFA

Regex

Warmup 2:
Surprising 
example here



An Interesting Infinite Regular Language 

L = {x∊ {0, 1}*: x has an equal number of substrings 01 and 10}.

L is infinite.
0, 00, 000, …

L is regular. How could this be?   
That seems to require comparing counts...

– easy for a CFG (see section: strings with equal # of 0s and 1s)
– but seems hard for DFAs!



An Interesting Infinite Regular Language 

L = {x∊ {0, 1}*: x has an equal number of substrings 01 and 10}.

L is infinite.
0, 00, 000, …

L is regular. How could this be?   It is just the set of binary strings 
that are empty or begin and end with the same character!

s0

0

1 s4s3

0

1

01

s2s1

1

0

10



Languages and Representations!

All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

??? Main Event:
Prove there is 
a context-free 
language 
that isn’t 
regular.

{001, 10, 12}


