
CSE 311: Foundations of Computing

Lecture 27: Irregularity

Recap from last lecture

Transform 𝑛-state NFA to 2𝑛-state DFA:

• DFA simulates the set of reachable

NFA states

⊆

≡

REs

DFAs NFAs

CFGs

Transform NFA to RE:

• Allow generalized NFA where edges labelled

with REs

• Reduce Generalized NFA one state after the

other

Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

– Accept strings from {0,1,2}* where the digits

mod 3 sum of the digits is 0

t0 t2

t1

0

0
0

1 1

1

2

22

Splicing out a state t1

Regular expressions to add to edges

t0 t2

t1

0

0

1 1

1

2

22

t0→t1→t0 : 10*2
t0→t1→t2 : 10*1
t2→t1→t0 : 20*2
t2→t1→t2 : 20*1

0

s
ɛ

f

ɛ

Splicing out a state t1

Regular expressions to add to edges

t0 t2

0 ∪ 20*1
2 ∪ 10*1

t0→t1→t0 : 10*2
t0→t1→t2 : 10*1
t2→t1→t0 : 20*2
t2→t1→t2 : 20*1

0 ∪ 10*2

s
ɛ

f

ɛ
1 ∪ 20*2

Splicing out state t2 (and then t0)

t0 t2
R1

R1: 0 ∪ 10*2
R2: 2 ∪ 10*1
R3: 1 ∪ 20*2
R4: 0 ∪ 20*1

R5: R1 ∪ R2R4*R3

R4R2

R3

Final regular expression: R5*=

(0 ∪ 10*2 ∪ (2 ∪ 10*1)(0 ∪ 20*1)*(1 ∪ 20*2))*

f

ɛ

s
ɛ

t0

R5
f

ɛ

s
ɛ

The story so far...

⊆

≡

REs

DFAs NFAs

CFGs

≡

Languages and Representations!

All

Context-Free

Regular

Finite

0*
DFA

NFA

Regex

??? Main Event:

Prove there is

a context-free

language

that isn’t

regular.

{001, 10, 12}

The language of “Binary Palindromes” is Context-Free

S → ε | 0 | 1 | 0S0 | 1S1

Is it regular?

Is the language of “Binary Palindromes” Regular ?

Intuition (NOT A PROOF!):

Q: What would a DFA need to keep track of to decide?

Is the language of “Binary Palindromes” Regular ?

Intuition (NOT A PROOF!):

Q: What would a DFA need to keep track of to decide?

A: It would need to keep track of the “first part” of the input

in order to check the second part against it

…but there are an infinite # of possible first parts and we

only have finitely many states.

Proof idea: any machine that does not remember the entire first

half will be wrong for some inputs

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that it’s possible.

– Therefore, some DFA (call it M) exists that recognizes B

– We want to show: M accepts or rejects a string it shouldn’t.

Key Idea 1: If two strings “collide” at any point, a

DFA can no longer distinguish between them!

x
z

y

The general proof strategy is:

– Assume (for contradiction) that it’s possible.

– Therefore, some DFA (call it M) exists that recognizes B

– We want to show: M accepts or rejects a string it shouldn’t.

Key Idea 1: If two strings “collide” at any point, a

DFA can no longer distinguish between them!

Key Idea 2: Our machine M has a finite number of

states which means if we have infinitely many

strings, two of them must collide!

B = {binary palindromes} can’t be recognized by any DFA

x
z

y

B = {binary palindromes} can’t be recognized by any DFA

Proof. Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

Key Idea 2: Our machine has a finite number of states which means

if we have infinitely many strings, two of them must collide!

B = {binary palindromes} can’t be recognized by any DFA

Proof. Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many

strings in S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that

end in the same state of M.

SUPER IMPORTANT POINT: You do not get to choose

what a and b are. Remember, we’ve just proven they

exist…we have to take the ones we’re given!

B = {binary palindromes} can’t be recognized by any DFA

Proof. Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many strings in
S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that end in the same
state of M.

Now, consider appending 0a to both strings.

Then, since 0a1 and 0b1 end in the same state, 0a10a and 0b10a

also end in the same state, call it q.

But then M makes a mistake: q needs to be an accept state since

0a10a ∈ B, but M would accept 0b10a ∉ B which is an error.

0a
a1

q
0a

0b1

B = {binary palindromes} can’t be recognized by any DFA

Proof. Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.
Since there are finitely many states in M and infinitely many strings in
S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that end in the same
state of M.

Now, consider appending 0a to both strings.

Then, since 0a1 and 0b1 end in the same state, 0a10a and 0b10a

also end in the same state, call it q. But then M must make a
mistake: q needs to be an accept state since 0a10a ∈ B, but then
M would accept 0b10a ∉ B which is an error.

This is a contradiction since we assumed that M recognizes B.
Since M was arbitrary, no DFA recognizes B. □

0a
a1

q
0a

0b1

Showing that a Language L is not regular

1. “Suppose for contradiction that some DFA M recognizes L.”

2. Consider an INFINITE set S of “partial strings” (which we

intend to complete later). It is imperative that for every pair

of strings in our set there is an “accept” completion that

the two strings DO NOT SHARE.

3. “Since S is infinite and M has finitely many states, there

must be two strings sa and sb in S for sa ≠ sb that end up at

the same state of M.”

4. Consider appending t (depends on sa and sb) to each of the

two strings.

5. “Since sa and sb both end up at the same state of M, and

we appended the same string t, both sat and sbt end at the

same state q of M. Since sat ∈ L and sbt ∉ L, M does not

recognize L.”

6. “Since M was arbitrary, no DFA recognizes L.”

Lecture 27 Activity

You will be assigned to breakout rooms. Please:

• Introduce yourself

• Choose someone to share their screen, showing this PDF

• Fill in the gaps of the proof that the language 𝐴 = {0𝑛1𝑛: 𝑛 ≥ 0} is not regular.

Fill out the poll everywhere for Activity

Credit!

Go to pollev.com/philipmg and login with

your UW identity

1. Suppose for contradiction that some DFA, M, recognizes A.

2. Let S = {???}. Since S is infinite and M has finitely many states, there must be

two distinct strings, ??? and ??? that end in the same state in M.

3. Consider appending t=??? to both strings.

4. Note that ???t ∈ A, but ???t ∉ A since ????. But they both end up in the same

state of M, call it q. Since ???t ∈ A, state q must be an accept state but then

M would incorrectly accept ???t ∉ A so M does not recognize A.

5. Since M was arbitrary, no DFA recognizes A.

http://pollev.com/philipmg

Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, accepts P.

Let S =

Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}. Since S is infinite and M has finitely many

states, there must be two strings, (a and (b for some a ≠ b that

end in the same state in M.

Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}. Since S is infinite and M has finitely many

states, there must be two strings, (a and (b for some a ≠ b that

end in the same state in M.

Consider appending)a to both strings.

Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}. Since S is infinite and M has finitely many

states, there must be two strings, (a and (b for some a ≠ b that

end in the same state in M.

Consider appending)a to both strings.

Note that (a)a ∈ P, but (b)a ∉ P since a ≠ b. But they both end up

in the same state of M, call it q. Since (a)a ∈ P, state q must be

an accept state but then M would incorrectly accept (b)a ∉ P so

M does not recognize P.

Since M was arbitrary, no DFA recognizes P.

Showing that a Language L is not regular

1. “Suppose for contradiction that some DFA M recognizes L.”

2. Consider an INFINITE set S of “partial strings” (which we

intend to complete later). It is imperative that for every pair

of strings in our set there is an “accept” completion that

the two strings DO NOT SHARE.

3. “Since S is infinite and M has finitely many states, there

must be two strings sa and sb in S for sa ≠ sb that end up at

the same state of M.”

4. Consider appending the (correct) completion t to each of

the two strings.

5. “Since sa and sb both end up at the same state of M, and

we appended the same string t, both sat and sbt end at the

same state q of M. Since sat ∈ L and sbt ∉ L, M does not

recognize L.”

6. “Since M was arbitrary, no DFA recognizes L.”

Fact: This method is optimal

• Suppose that for a language L, the set S is a largest set of

“partial strings” with the property that for every pair

sa≠ sb ∈ S, there is some string t such that one of sat, sbt is

in L but the other isn’t.

• If S is infinite, then L is not regular

• If S is finite, then the minimal DFA for L has precisely

|S| states, one reached by each member of S.

Fact: This method is optimal

• Suppose that for a language L, the set S is a largest set of

“partial strings” with the property that for every pair

sa≠ sb ∈ S, there is some string t such that one of sat, sbt is

in L but the other isn’t.

• If S is infinite, then L is not regular

• If S is finite, then the minimal DFA for L has precisely

|S| states, one reached by each member of S.

Corollary: Our minimization algorithm was correct.

– we separated exactly those states for which some t would make

one accept and another not accept

Fact: This method is optimal

• Suppose that for a language L, the set S is a largest set of

“partial strings” with the property that for every pair

sa≠ sb ∈ S, there is some string t such that one of sat, sbt is

in L but the other isn’t.

• If S is infinite, then L is not regular

• If S is finite, then the minimal DFA for L has precisely

|S| states, one reached by each member of S.

BTW: There is another method commonly used to prove

languages not regular called the Pumping Lemma that we

won’t use in this course. Note that it doesn’t always work.

