
CSE 311: Foundations of Computing

Lecture 29: Cardinality and the Halting problem

Recap: Cardinality

Definition: Two sets 𝐴 and𝐵 have the same cardinality if there is

an bijective (=injective + surjective) function𝑓 ∶ 𝐴 → 𝐵.

𝐴 𝐵

a

b

c

d

e

1

2

3

4

5

6f

Recall that a function 𝑓 ∶ 𝐴 → 𝐵 is
• Injective, if for for each 𝑦 ∈ 𝐵 there is at most one 𝑥 ∈ 𝐴 with 𝑓 𝑥 = 𝑦
• Surjective, if for every 𝑦 ∈ 𝐵 there is at least one 𝑥 ∈ 𝐴 with 𝑓 𝑥 = 𝑦

Cardinality

Do the natural numbers and the even natural numbers have

the same cardinality?

Yes!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 ...

What’s the map 𝒇 ∶ ℕ → 𝟐ℕ ? 𝒇 𝒏 = 𝟐𝒏

Countable sets

Definition: A set is countable iff it has the same cardinality as
some subset of ℕ.

Equivalent: A set 𝑺 is countable iff there is a surjective
function 𝒈 ∶ ℕ → 𝑺

Equivalent: A set 𝑺 is countable iff we can order the elements
𝑺 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑,… }

Example: ℤ is countable

Claim: Σ∗ is countable for every finite Σ

Idea: For 𝑘 = 0,1,2,… list all the Σ 𝑘 many strings of length 𝑘.

Then each string in Σ∗ appears in that list.

e.g. {0,1}* is countable:

{ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ... }

Countable sets

A set 𝑺 is countable iff we can order the elements of 𝑺 as
𝑺 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … }

Countable sets:

ℕ - the natural numbers
ℤ - the integers
ℚ - the rationals
Σ∗- the strings over any finite Σ
The set of all Java programs
The set of all Turing machines

}
Enumerate in

increasing

length

Uncountable sets: ???

Lecture 29 Activity

• Please help us improve the quality of this course and take a few minutes to fill out

the course evaluation.

• The links are the following.

CSE 311 A (afternoon): https://uw.iasystem.org/survey/242867
CSE 311 B (morning): https://uw.iasystem.org/survey/242869

Fill out the poll everywhere for Activity

Credit!

Go to pollev.com/philipmg and login with

your UW identity

https://uw.iasystem.org/survey/242867
https://uw.iasystem.org/survey/242869
http://pollev.com/philipmg

Are the real numbers countable?

Theorem [Cantor]:

The set of real numbers between 0 and 1 is not countable.

Proof will be by contradiction.

Uses a new method called diagonalization.

Real numbers between 0 and 1: [0,1)

Every number between 0 and 1 has an infinite decimal

expansion:

1/2 = 0.50000000000000000000000...

1/3 = 0.33333333333333333333333...

1/7 = 0.14285714285714285714285...

𝜋-3 = 0.14159265358979323846264...

1/5 = 0.19999999999999999999999...

= 0.20000000000000000000000...

Representation is unique except for the cases that

the decimal expansion ends in all 0’s or all 9’s.

We will never use the all 9’s representation.

r1 0.50000000…

r2 0.33333333…

r3 0.14285714…

r4 0.14159265…

r5 0.12122122…

r6 0.25000000…

r7 0.71828182…

r8 0.61803394…
... ...

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0

r2 0. 3 3 3 3 3 3 3 3

r3 0. 1 4 2 8 5 7 1 4

r4 0. 1 4 1 5 9 2 6 5

r5 0. 1 2 1 2 2 1 2 2

r6 0. 2 5 0 0 0 0 0 0

r7 0. 7 1 8 2 8 1 8 2

r8 0. 6 1 8 0 3 3 9 4

...

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0

r2 0. 3 3 3 3 3 3 3 3

r3 0. 1 4 2 8 5 7 1 4

r4 0. 1 4 1 5 9 2 6 5

r5 0. 1 2 1 2 2 1 2 2

r6 0. 2 5 0 0 0 0 0 0

r7 0. 7 1 8 2 8 1 8 2

r8 0. 6 1 8 0 3 3 9 4

...

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0

r2 0. 3 3 3 3 3 3 3 3

r3 0. 1 4 2 8 5 7 1 4

r4 0. 1 4 1 5 9 2 6 5

r5 0. 1 2 1 2 2 1 2 2

r6 0. 2 5 0 0 0 0 0 0

r7 0. 7 1 8 2 8 1 8 2

r8 0. 6 1 8 0 3 3 9 4

...

Flipping rule:

If digit is 5, make it 1.

If digit is not 5, make it 5.

1

5

5

5

5

5

1

5

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0

r2 0. 3 3 3 3 3 3 3 3

r3 0. 1 4 2 8 5 7 1 4

r4 0. 1 4 1 5 9 2 6 5

r5 0. 1 2 1 2 2 1 2 2

r6 0. 2 5 0 0 0 0 0 0

r7 0. 7 1 8 2 8 1 8 2

r8 0. 6 1 8 0 3 3 9 4

...

Flipping rule:

If digit is 5, make it 1.

If digit is not 5, make it 5.

1

5

5

5

5

5

1

5

If diagonal element is 𝟎. 𝒙𝟏𝟏𝒙𝟐𝟐𝒙𝟑𝟑𝒙𝟒𝟒𝒙𝟓𝟓⋯ then let’s call the flipped
number 𝟎.ෝ𝒙𝟏𝟏ෝ𝒙𝟐𝟐ෝ𝒙𝟑𝟑ෝ𝒙𝟒𝟒ෝ𝒙𝟓𝟓⋯

It cannot appear anywhere on the list!

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0

r2 0. 3 3 3 3 3 3 3 3

r3 0. 1 4 2 8 5 7 1 4

r4 0. 1 4 1 5 9 2 6 5

r5 0. 1 2 1 2 2 1 2 2

r6 0. 2 5 0 0 0 0 0 0

r7 0. 7 1 8 2 8 1 8 2

r8 0. 6 1 8 0 3 3 9 4

...

Flipping rule:

If digit is 5, make it 1.

If digit is not 5, make it 5.

1

5

5

5

5

5

1

5

If diagonal element is 𝟎. 𝒙𝟏𝟏𝒙𝟐𝟐𝒙𝟑𝟑𝒙𝟒𝟒𝒙𝟓𝟓⋯ then let’s call the flipped
number 𝟎.ෝ𝒙𝟏𝟏ෝ𝒙𝟐𝟐ෝ𝒙𝟑𝟑ෝ𝒙𝟒𝟒ෝ𝒙𝟓𝟓⋯

It cannot appear anywhere on the list!

For every 𝒏 ≥ 𝟏:

𝒓𝒏 ≠ 𝟎. ෝ𝒙𝟏𝟏ෝ𝒙𝟐𝟐ෝ𝒙𝟑𝟑ෝ𝒙𝟒𝟒ෝ𝒙𝟓𝟓⋯

because the numbers differ on

the 𝒏-th digit!

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0

r2 0. 3 3 3 3 3 3 3 3

r3 0. 1 4 2 8 5 7 1 4

r4 0. 1 4 1 5 9 2 6 5

r5 0. 1 2 1 2 2 1 2 2

r6 0. 2 5 0 0 0 0 0 0

r7 0. 7 1 8 2 8 1 8 2

r8 0. 6 1 8 0 3 3 9 4

...

Flipping rule:

If digit is 5, make it 1.

If digit is not 5, make it 5.

1

5

5

5

5

5

1

5

So the list is incomplete, which is a contradiction.

Thus the real numbers between 0 and 1 are not countable: “uncountable”

For every 𝒏 ≥ 𝟏:

𝒓𝒏 ≠ 𝟎. ෝ𝒙𝟏𝟏ෝ𝒙𝟐𝟐ෝ𝒙𝟑𝟑ෝ𝒙𝟒𝟒ෝ𝒙𝟓𝟓⋯

because the numbers differ on

the 𝒏-th digit!

Last time: Countable sets

Countable sets:

ℕ - the natural numbers
ℤ - the integers
ℚ - the rationals
Σ∗- the strings over any finite Σ
The set of all Java programs
The set of all Turing machines

}
Enumerate in

increasing

length

Uncountable sets:

ℝ - the natural numbers
P(ℕ) - power set of ℕ
Set of functions 𝑓:ℕ → {0,1}

Uncomputable functions

We have seen that:

– The set of all (Java) programs is countable

– The set of all functions 𝑓 ∶ ℕ → {0,1} is not countable

So: There must be some function 𝑓 ∶ ℕ → {0,1} that is not

computable by any program!

Interesting… maybe.

Can we come up with an explicit function that is
uncomputable?

Some Notation

We’re going to be talking about Java code.

CODE(P) will mean “the code of the program P”

So, consider the following function:
public String P(String x) {

return new String(Arrays.sort(x.toCharArray());

}

What is P(CODE(P))?

“(((())))..;AACPSSaaabceeggghiiiilnnnnnooprrrrrrrrrrrsssttttttuuwxxyy{}”

Undecidability of The Halting Problem

CODE(P) means “the code of the program P”

The Halting Problem

Given: - CODE(P) for any program P

- input x

Output: true if P halts on input x

false if P does not halt on input x

Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

Theorem [Turing]: There is no program that solves

the Halting Problem

The Halting Problem

Given: - CODE(P) for any program P

- input x

Output: true if P halts on input x

false if P does not halt on input x

Proof by contradiction

Suppose that H is a Java program that solves the
Halting problem.

x

Proof by contradiction

Suppose that H is a Java program that solves the
Halting problem.

Then we can write this program:

public static void D(String s) {

if (H(s,s) == true) {

...

} else {

...

}

}

public static bool H(String s, String x) { ... }

Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s) == true) {

...
}
else {

...
}

}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(s) {
if (H(s,s) == true) {

...
}
else {

...
}

}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(s) {
if (H(s,s) == true) {

while (true); /* don’t halt */
}
else {

...
}

}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(s) {
if (H(s,s) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */

}
}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(s) {
if (H(s,s) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */

}
}

Does D(CODE(D)) halt?

Contradiction!

Done

• We proved that there is no computer

program that can solve the Halting Problem.

– There was nothing special about Java*
[Church-Turing thesis]

• This tells us that there is no compiler that can check our

programs and guarantee to find any infinite loops they

might have.

Where did the idea for creating D come from?

public static void D(s) {
if (H(s,s) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */

}
}

D halts on input code(P) iff H(code(P),code(P)) outputs false

iff P doesn’t halt on input code(P)

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

Write <P> for CODE(P)

This listing of all programs really does exist

since the set of all Java programs is countable

The goal of this “diagonal” argument is not

to show that the listing is incomplete but

rather to show that a “flipped” diagonal

element is not in the listing

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0 1 1 0 1 1 1 0 0 0 1 ...

1 1 0 1 0 1 1 0 1 1 1 ...

1 0 1 0 0 0 0 0 0 0 1 ...

0 1 1 0 1 0 1 1 0 1 0 ...

0 1 1 1 1 1 1 0 0 0 1 ...

1 1 0 0 0 1 1 0 1 1 1 ...

1 0 1 1 0 0 0 0 0 0 1 ...

0 1 1 1 1 0 1 1 0 1 0 ...

.

.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

Write <P> for CODE(P)

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0 1 1 0 1 1 1 0 0 0 1 ...

1 1 0 1 0 1 1 0 1 1 1 ...

1 0 1 0 0 0 0 0 0 0 1 ...

0 1 1 0 1 0 1 1 0 1 0 ...

0 1 1 1 1 1 1 0 0 0 1 ...

1 1 0 0 0 1 1 0 1 1 1 ...

1 0 1 1 0 0 0 0 0 0 1 ...

0 1 1 1 1 0 1 1 0 1 0 ...

.

.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

1

0

0

1

0

0

1

0

Write <P> for CODE(P)

Want behavior of program 𝑫 to be
like the flipped diagonal, so it can’t
be in the list of all programs.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

Where did the idea for creating D come from?

public static void D(s) {
if (H(s,s) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */

}
}

D halts on input code(P) iff H(code(P),code(P)) outputs false

iff P doesn’t halt on input code(P)

Therefore for any program P, D differs from P on input code(P)

