1. Proof Strategies

Proof by Counterexample

To prove $\neg \forall x P(x)$, prove $\exists x \neg P(x)$

- An application of De Morgan's Law
- Intuition: If something is not true for every x in the domain, it must be not true for at least a x in the domain.
- Goal: Identify the x in the domain for which P(x) is not true this is a *counterexample* to $\forall x P(x)$

Proof by Contrapositive

We can prove $p \rightarrow q$ by proving the equivalent contrapositive, $\neg q \rightarrow \neg p$.

$1.1 \neg q$	[Assumption]
1.2	[???]
$1.3 \neg p$	[???]
1. $\neg q \rightarrow \neg p$	[Direct Proof]
2. $p \rightarrow q$	[Contrapositive, 1]

Proof by Contradiction

If we show $p \to F$, we have shown $\neg p$.

• This style of proof is generally done by "supposing" the *opposite* of what we want to prove, and showing that under this condition, we see a contradiction.

1.1 p	[Assumption]
1.2	[???]
1.3 F	[???]
2. $p \to F$	[Direct Proof]
3. $\neg p \lor F$	[Law of Implication]
4. $\neg p$	[Identity]