
Section 04: Solutions

1. Prime Checking

One possible way to check if an integer n that is greater than 1 is prime is to check whether it is divisible by any
integer in the range 1 < i < n - if it is, n is not prime.

Your friend suggests that you don’t need to check every integer in the above range, but that the range 1 < i ≤
√
n

will suffice.

We will use “nontrivial divisor” to mean a factor that isn’t 1 or the number itself. Formally, a positive integer k
being a “nontrivial divisor” of n means that k | n, k 6= 1 and k 6= n.

Claim: when a positive integer n has a nontrivial divisor, it has a nontrivial divisor at most
√
n.

(a) Let’s try to break down the claim and understand it through examples. Show an example (a specific n and k)
of a nontrivial divisor, of a divisor that is not nontrivial, and of a number with only trivial divisors. Solution:

Some examples of ”trivial” divisors: (1 of 15), (3 of 3)
Some examples of nontrivial divisors: (3 of 15), (9 of 81)
A number with only trivial divisor is just a prime number: it has no factors.

(b) Prove the claim. Hint: you may want to divide into two cases!

Solution:

Let k be a nontrivial divisor of n. Since k is a divisor, n = kc for some integer c. Observe that c is also
nontrivial, since if c were 1 or n then k would have to be n or 1.

We now have two cases:

Case 1: k ≤
√
n

If k ≤
√
n, then we’re done because k is the desired nontrivial divisor.

Case 2: k >
√
n

If k >
√
n, then multiplying both sides by c we get ck > c

√
n. But ck = n so n > c

√
n. Finally, dividing

both sides by
√
n gives

√
n > c, so c is the desired nontrivial factor.

In both cases we find a nontrivial divisor at most
√
n, as required.

Alternate solution (proof by contradiction): Let k be a nontrivial divisor of n. Since k is a divisor, n = kc
for some integer c. Observe that c is also nontrivial, since if c were 1 or n then k would have to be n or 1.

Suppose, for contradiction, that k >
√
n and c >

√
n. Then kc >

√
n
√
n = n. But by assumption we have

kc = n, so this is a contradiction. It follows that either k or c is at most
√
nmeaning that n has a nontrivial

divisor at most
√
n.

2. Proof by Contrapositive

Prove that if n - ab, then n - a and n - b for any a, b, n ∈ Z.

Solution:

We want to show for any a, b, n ∈ Z that n - ab → n - a ∧ n - b.

We know the contrapositive of this is ¬(n - a∧n - b) → ¬(n - ab), which can be rewritten as n | a∨n | b → n | ab.
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That is, we want to prove that if n is divisible by a or n is divisible by b, then n is divisible by ab.

Let’s split this into two cases.

Case 1: Suppose n | a. Then, ∃k a = kn. So, ab = knb = (kb)n. Therefore, n | ab.

Case 2: Suppose n | b. Then, ∃k b = kn. So, ab = akn = (ak)n. Therefore, n | ab.

Therefore, we have shown by contrapositive that if n - ab, then n - a and n - b for any a, b, n ∈ Z.

3. Which Do You Proofer?

For each of the following, if it is true, prove it; if it is not true, find a counterexample.

(a) ∀x ∈ R (x+ 1)2 = x2 + 1 Solution:

This statement is not true. Consider x = 1. In this case, the LHS evaluates to 4 and the RHS evaluates to
2. 4 6= 2, hence we have shown that the statement does not hold.

(b) If n2 is even, n is even. Solution:

Let us show this by showing the contrapositive: if n is odd then n2 is odd.

Suppose n is odd. Then, there is an integer k such that n = 2k + 1. We can express n2 as (2k + 1)2 =
4k2 + 4k + 1 = 2(2k2 + 2k) + 1. Therefore, n2 is odd.

Hence, we have shown by contrapositive that if n2 is even, n is even.

(c)
√
2 is irrational. Hint: you may need to use the above result :) Solution:

Let us prove this statement by contradiction.

Suppose
√
2 is rational. Then there are integers p, q such that

√
2 = p

q where p and q have no factors in
common other than 1 (if they had factors in common, we could simplify the fraction to get p and q in the
form we want). Squaring both sides, we get 2 = p2

q2 or 2q2 = p2. We know 2q2 is even. Since they are
equal, p2 must also be even. Then, p must also be even from (b).

Let p = 2k for some integer k. Now, we have 2q2 = (2k)2 or 2q2 = 4k2, which is q2 = 2k2. We know 2k2

is even. Since they are equal, q2 must also be even. Then, q must also be even from (b).

So p and q are even, and share a common factor of 2. However, we assumed p and q had no common
factors. This is a contradiction. Therefore,

√
2 is irrational.

4. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say ∞.

(a) A = {1, 2, 3, 2}

Solution:

3

(b) B = {{}, {{}}, {{}, {}}, {{}, {}, {}}, . . . }
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Solution:

B = {{}, {{}}, {{}, {}}, {{}, {}, {}}, . . . }
= {{}, {{}}, {{}}, {{}}, . . . }
= {∅, {∅}}

So, there are two elements in B.

(c) C = A× (B ∪ {7})

Solution:

C = {1, 2, 3} × {∅, {∅}, 7} = {(a, b) | a ∈ {1, 2, 3}, b ∈ {∅, {∅}, 7}}. It follows that there are 3 × 3 = 9
elements in C.

(d) D = ∅

Solution:

0.

(e) E = {∅}

Solution:

1.

(f) F = P({∅})

Solution:

21 = 2. The elements are F = {∅, {∅}}.

5. Set = Set

Prove the following set identities.

(a) Let the universal set be U . Prove A ∩B ⊆ A\B for any sets A,B.

Solution:

Suppose A∩B is nonempty (if it is empty, the proof is done; we need this line in order to assert that there
is an element x in the next sentence). Let x be an arbitrary element in A ∩B.

x ∈ A ∩B implies that x ∈ A ∧ x ∈ B [Definition of ∩]
which implies that x ∈ A ∧ x 6∈ B [Definition of B]

which implies that x ∈ A \B [Definition of \]

The above logic shows that x ∈ A∩B → x ∈ A\B. So by the definition of subset, we have A∩B ⊆ A\B.
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Solution:

Observe that the following equalities hold.

A ∩B = {x : x ∈ A ∧ x ∈ B} [Definition of ∩]
= {x : x ∈ A ∧ x 6∈ B} [Definition of B]

= {x : x ∈ A \B} [Definition of \]
= A \B [Definition of set comprehension]

Thus, the two sets A ∩B and A \B are in fact equal, so each is a subset of the other.

Solution:

Let x be arbitrary.
x ∈ A ∩B → x ∈ A ∧ x ∈ B [Definition of ∩]

→ x ∈ A ∧ x 6∈ B [Definition of B]

→ x ∈ A \B [Definition of \]

Thus, since x ∈ A ∩B → x ∈ A \B, it follows that A ∩B ⊆ A \B, by definition of subset.

(b) Prove that (A ∩B)× C ⊆ A× (C ∪D) for any sets A,B,C,D.

Solution:

Let x be an arbitrary element of (A ∩ B) × C. Then, by definition of Cartesian product, x must be of the
form (y, z) where y ∈ A∩B and z ∈ C. Since y ∈ A∩B by definition of ∩, y ∈ A and y ∈ B; in particular,
all we care about is that y ∈ A. Since z ∈ C, by definition of ∪, we also have z ∈ C ∪D. Therefore since
y ∈ A and z ∈ C ∪D, by definition of Cartesian product we have x = (y, z) ∈ A× (C ∪D).

Since x was an arbitrary element of (A ∩ B) × C we have proved that (A ∩ B) × C ⊆ A × (C ∪ D) as
required.

6. Modular Arithmetic

(a) Prove that if a | b and b | a, where a and b are integers, then a = b or a = −b.

Solution:

Suppose that a | b and b | a, where a, b are integers. By the definition of divides, we have a 6= 0, b 6= 0 and
b = ka, a = jb for some integers k, j. Combining these equations, we see that a = j(ka).

Then, dividing both sides by a, we get 1 = jk. So,
1

j
= k. Note that j and k are integers, which is only

possible if j, k ∈ {1,−1}. It follows that b = −a or b = a.

(b) Prove that if n | m, where n and m are integers greater than 1, and if a ≡ b (mod m), where a and b are
integers, then a ≡ b (mod n).

Solution:

Suppose n | m with n,m > 1, and a ≡ b (mod m). By definition of divides, we have m = kn for some
k ∈ Z. By definition of congruence, we have m | a − b, which means that a − b = mj for some j ∈ Z.
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Combining the two equations, we see that a − b = (knj) = n(kj). By definition of congruence, we have
a ≡ b (mod n), as required.

7. Trickier Set Theory

Note, this problem requires a little more thinking. The solution will cover both the answer as well as the intuition
used to arrive at it.

Show that for any set X and any set A such that A ∈ P(X), there exists a set B ∈ P(X) such that A ∩ B = ∅ and
A ∪B = X.

Solution:

This solution might look long, but most of it is explaining the intuition. The proof itself is fairly short!

We start by lettingX andA be arbitrary sets and assume thatA ∈ P(X). Nowwe think about our goal. We want
to show there is some set B with the given properties. The way to do this is usually to construct B somehow,
but there’s nothing in the problem that tells us where B might come from!

When you get stuck like this, try to use all the information given in the problem to deduce as many things as we
can. First we might notice that A ∈ P(X) means that A ⊆ X and B ∈ B means B ⊆ X. So given some subset
of X, we must construct some other subset.

Next, we consider what we know about B. The property that A∩B = ∅ means that B and A share no elements
in common. That is, B consists only of elements in X that are not in A. The property that A ∪B = X is a little
tricker. We might think of A as some collection of objects from X, A ∪ B throws in all the elements of B, and
once we do that we have all the elements of X. In order for this to happen, we know B must contain all the
elements of X that weren’t in A.

At this point we’ve deduced that B contains only elements in X that are not in A, but also that it must contain
all the elements of X that are not in A. This says that B is exactly the elements of X that are not in A. Does
this sound familiar? It’s exactly the set difference X \A.

Now we can write out the proof. Let X be an arbitrary set and let A be an arbitrary element of P(X). Let
B = X \ A. For any x ∈ X \ A, by definition we have x ∈ X which shows that B ⊆ X and by definition
B ∈ P(X).

To show that A∩B = ∅, we must show that there are no elements that are both in A and B. If x is inX \A, then
by definition x is not in A, so there’s no element that can be in both. Thus, A∩B = ∅. To prove A∪B = X, we
first suppose x ∈ A ∪B which by definition means x ∈ A or x ∈ B. If x ∈ A then since A ⊆ X we have x ∈ A.
If x ∈ B then x ∈ X \ A which by definition means that x ∈ X. In either case x ∈ X. In the other direction
suppose x ∈ X. We again consider two cases. If x ∈ A then there’s nothing to show because then x ∈ A ∪ B
automatically. If x 6∈ A then since x is an element of X not in A, by definition we have x ∈ X \A which is equal
to B, so in this case we also have x ∈ A∪B. In either case x ∈ A∪B. Since we’ve shown x ∈ A∪B if and only
if x ∈ X, we’ve shown A ∪B = X, which completes the proof.
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