Section 04: English Proofs, Sets

1. Prime Checking

One possible way to check if an integer n that is greater than 1 is prime is to check whether it is divisible by any integer in the range $1<i<n$ - if it is, n is not prime.
Your friend suggests that you don't need to check every integer in the above range, but that the range $1<i \leq \sqrt{n}$ will suffice.

We will use "nontrivial divisor" to mean a factor that isn't 1 or the number itself. Formally, a positive integer k being a "nontrivial divisor" of n means that $k \mid n, k \neq 1$ and $k \neq n$.

Claim: when a positive integer n has a nontrivial divisor, it has a nontrivial divisor at most \sqrt{n}.
(a) Let's try to break down the claim and understand it through examples. Show an example (a specific n and k) of a nontrivial divisor, of a divisor that is not nontrivial, and of a number with only trivial divisors.
(b) Prove the claim. Hint: you may want to divide into two cases!

2. Proof by Contrapositive

Prove that if $n \nmid a b$, then $n \nmid a$ and $n \nmid b$ for any $a, b, n \in \mathbb{Z}$.

3. Which Do You Proofer?

For each of the following, if it is true, prove it; if it is not true, find a counterexample.
(a) $\forall x \in \mathbb{R}(x+1)^{2}=x^{2}+1$
(b) If n^{2} is even, n is even.
(c) $\sqrt{2}$ is irrational. Hint: you may need to use the above result :)

4. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say ∞.
(a) $A=\{1,2,3,2\}$
(b) $B=\{\{ \},\{\{ \}\},\{\{ \},\{ \}\},\{\{ \},\{ \},\{ \}\}, \ldots\}$
(c) $C=A \times(B \cup\{7\})$
(d) $D=\varnothing$
(e) $E=\{\varnothing\}$
(f) $F=\mathcal{P}(\{\varnothing\})$

5. Set $=$ Set

Prove the following set identities.
(a) Let the universal set be \mathcal{U}. Prove $A \cap \bar{B} \subseteq A \backslash B$ for any sets A, B.
(b) Prove that $(A \cap B) \times C \subseteq A \times(C \cup D)$ for any sets A, B, C, D.

6. Modular Arithmetic

(a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.
(b) Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $a \equiv b(\bmod m)$, where a and b are integers, then $a \equiv b(\bmod n)$.

7. Trickier Set Theory

Note, this problem requires a little more thinking. The solution will cover both the answer as well as the intuition used to arrive at it.

Show that for any set X and any set A such that $A \in \mathcal{P}(X)$, there exists a set $B \in \mathcal{P}(X)$ such that $A \cap B=\emptyset$ and $A \cup B=X$.

