Section 05: Solutions

1. GCD

(a) Calculate $\operatorname{gcd}(100,50)$.

Solution:

```
50
```

(b) Calculate $\operatorname{gcd}(17,31)$.

Solution:

```
1
```

(c) Find the multiplicative inverse of $6(\bmod 7)$.

Solution:

6
(d) Does 49 have an multiplicative inverse $(\bmod 7)$?

Solution:

It does not. Intuitively, this is because 49x for any x is going to be 0 mod 7 , which means it can never be 1.

2. Extended Euclidean Algorithm

(a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.

Solution:
First, we find the gcd:

$$
\begin{align*}
\operatorname{gcd}(33,7) & =\operatorname{gcd}(7,5) \tag{1}\\
& =\operatorname{gcd}(5,2) \tag{2}\\
& =\operatorname{gcd}(2,1) \tag{3}\\
& =\operatorname{gcd}(1,0) \tag{4}\\
& =1 \tag{5}
\end{align*}
$$

$$
\begin{aligned}
33 & =7 \cdot 4+5 \\
7 & =5 \cdot 1+2 \\
5 & =2 \cdot 2+1 \\
2 & =1 \bullet 2+0
\end{aligned}
$$

Next, we re-arrange equations (1) - (3) by solving for the remainder:

$$
\begin{align*}
& 1=5-2 \cdot 2 \tag{6}\\
& 2=7-5 \bullet 1 \tag{7}\\
& 5=33-7 \bullet 4 \tag{8}
\end{align*}
$$

Now, we backward substitute into the boxed numbers using the equations:

$$
\begin{aligned}
1 & =5-2 \cdot 2 \\
& =5-(7-5 \cdot 1) \bullet 2 \\
& =3 \bullet 5-7 \bullet 2 \\
& =3 \bullet(33-7 \bullet 4)-7 \bullet 2 \\
& =33 \bullet 3+7 \bullet-14
\end{aligned}
$$

So, $1=33 \bullet 3+7 \bullet-14$. Thus, $33-14=19$ is the multiplicative inverse of $7 \bmod 33$.
(b) Now, solve $7 z \equiv 2(\bmod 33)$ for all of its integer solutions z.

Solution:

If $7 y \equiv 1(\bmod 33)$, then

$$
2 \cdot 7 y \equiv 2(\bmod 33)
$$

So, $z \equiv 2 \times 19(\bmod 33) \equiv 5(\bmod 33)$. This means that the set of solutions is $\{5+33 k \mid k \in \mathbb{Z}\}$.

3. Euclid's Lemma ${ }^{1}$

(a) Show that if an integer p divides the product of two integers a and b, and $\operatorname{gcd}(p, a)=1$, then p divides b.

Solution:

Suppose that $p \mid a b$ and $\operatorname{gcd}(p, a)=1$ for integers a, b, and p. By Bezout's theorem, since $\operatorname{gcd}(p, a)=1$, there exist integers r and s such that

$$
r p+s a=1
$$

Since $p \mid a b$, by the definition of divides there exists an integer k such that $p k=a b$. By multiplying both sides of $r p+s a=1$ by b we have,

$$
\begin{aligned}
r p b+s(a b) & =b \\
r p b+s(p k) & =b \\
p(r b+s k) & =b
\end{aligned}
$$

Since r, b, s, k are all integers, $(r b+s k)$ is also an integer. By definition we have $p \mid b$.
(b) Show that if a prime p divides $a b$ where a and b are integers, then $p \mid a$ or $p \mid b$. (Hint: Use part (a))

Solution:

[^0]Suppose that $p \mid a b$ for prime number p and integers a, b. There are two cases.
Case 1: $\operatorname{gcd}(p, a)=1$
In this case, $p \mid b$ by part (a).
Case 2: $\operatorname{gcd}(p, a) \neq 1$
In this case, p and a share a common positive factor greater than 1 . But since p is prime, its only positive factors are 1 and p, meaning $\operatorname{gcd}(p, a)=p$. This says p is a factor of a, that is, $p \mid a$.
In both cases we've shown that $p \mid a$ or $p \mid b$.

4. Have we derived yet?

Each of the following proofs has some mistake in its reasoning - identify that mistake.
(a) Proof. If it is sunny, then it is not raining. It is not sunny. Therefore it is raining.

Solution:

Let p be the proposition that it is sunny and r be the proposition that it is not raining. We know $p \rightarrow \neg r$ and $\neg p$. Using this, the proof shows the inverse $\neg p \rightarrow r$. However, the inverse is not equivalent to the implication, so we cannot infer the inverse from the given statement.
(b) Prove that if $x+y$ is odd, either x or y is odd but not both.

Proof. Suppose without loss of generality that x is odd and y is even.
Then, $\exists k x=2 k+1$ and $\exists m y=2 m$. Adding these together, we can see that $x+y=2 k+1+2 m=$ $2 k+2 m+1=2(k+m)+1$. Since k and m are integers, we know that $k+m$ is also an integer. So, we can say that $x+y$ is odd. Hence, we have shown what is required.

Solution:

Looking at this logically, let's let p be the proposition that $x+y$ is odd and r be the proposition that either x or y is odd but not both. This proof shows $r \rightarrow p$ instead of $p \rightarrow r$.

This proof is incorrect because we have assumed the conclusion. Remember, the converse is not equivalent to the implication.
(c) Prove that $2=1$.:)

Proof. Let a, b be two equal, non-zero integers. Then,

$$
\begin{aligned}
a & =b & & \\
a^{2} & =a b & & {[\text { Multiply both sides by a] }} \\
a^{2}-b^{2} & =a b-b^{2} & & {\left[\text { Subtract } b^{2}\right. \text { from both sides] }} \\
(a-b)(a+b) & =b(a-b) & & {[\text { Factor both sides }] } \\
a+b & =b & & {[\text { Divide both sides by } a-b] } \\
b+b & =b & & {[\text { Since } a=b] } \\
2 b & =b & & {[\text { Simplify }] } \\
2 & =1 & & {[\text { Divide both sides by b] }}
\end{aligned}
$$

Solution:

In line 5 , we divided by $a-b$. Since $a=b, b-a=0$. Therefore, this was dividing by 0 . Dividing by 0 is an undefined operation (!) so this was an invalid step in the proof.
(d) Prove that $\sqrt{3}+\sqrt{7}<\sqrt{20}$

Proof.

$$
\begin{aligned}
& \sqrt{3}+\sqrt{7}<\sqrt{20} \\
& (\sqrt{3}+\sqrt{7})^{2}<20 \\
& 3+2 \sqrt{21}+7<20 \\
& 19.165<20
\end{aligned}
$$

It is true that $19.165<20$, hence, we have shown that $\sqrt{3}+\sqrt{7}<\sqrt{20}$

Solution:

Like part (b), here too, we have assumed the conclusion was true. In this case, instead of showing that this statement is true, we have shown this statement $\rightarrow T$. Remember, this does not necessarily mean that p is true! If you think back to the truth table for the implication $p \rightarrow q$, the implication becomes a vacuous truth if q is true: we know nothing about the truth value of p .

[^0]: ${ }^{1}$ these proofs aren't much longer than proofs you've seen so far, but it can be a little easier to get stuck - use these as a chance to practice how to get unstuck if you do!

