
Section 05: Number Theory

1. GCD

(a) Calculate gcd(100, 50).

(b) Calculate gcd(17, 31).

(c) Find the multiplicative inverse of 6 (mod 7).

(d) Does 49 have an multiplicative inverse (mod 7)?

2. Extended Euclidean Algorithm

(a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that 7y ≡ 1 (mod 33). You should use the
extended Euclidean Algorithm. Your answer should be in the range 0 ≤ y < 33.

(b) Now, solve 7z ≡ 2(mod 33) for all of its integer solutions z.

3. Euclid’s Lemma1

(a) Show that if an integer p divides the product of two integers a and b, and gcd(p, a) = 1, then p divides b.

(b) Show that if a prime p divides ab where a and b are integers, then p | a or p | b. (Hint: Use part (a))

4. Have we derived yet?

Each of the following proofs has some mistake in its reasoning - identify that mistake.

(a) Proof. If it is sunny, then it is not raining. It is not sunny. Therefore it is raining.

(b) Prove that if x+ y is odd, either x or y is odd but not both.

1these proofs aren’t much longer than proofs you’ve seen so far, but it can be a little easier to get stuck – use these as a chance to practice
how to get unstuck if you do!
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Proof. Suppose without loss of generality that x is odd and y is even.

Then, ∃k x = 2k + 1 and ∃m y = 2m. Adding these together, we can see that x + y = 2k + 1 + 2m =
2k + 2m+ 1 = 2(k +m) + 1. Since k and m are integers, we know that k +m is also an integer. So, we can
say that x+ y is odd. Hence, we have shown what is required.

(c) Prove that 2 = 1. :)

Proof. Let a, b be two equal, non-zero integers. Then,

a = b

a2 = ab [Multiply both sides by a]

a2 − b2 = ab− b2 [Subtract b2 from both sides]

(a− b)(a+ b) = b(a− b) [Factor both sides]

a+ b = b [Divide both sides by a− b]

b+ b = b [Since a = b]

2b = b [Simplify]

2 = 1 [Divide both sides by b]

(d) Prove that
√
3 +

√
7 <

√
20

Proof.
√
3 +

√
7 <

√
20

(
√
3 +

√
7)2 < 20

3 + 2
√
21 + 7 < 20

19.165 < 20

It is true that 19.165 < 20, hence, we have shown that
√
3 +

√
7 <

√
20
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