Section 05: Number Theory

1. GCD

(a) Calculate $\operatorname{gcd}(100,50)$.
(b) Calculate $\operatorname{gcd}(17,31)$.
(c) Find the multiplicative inverse of $6(\bmod 7)$.
(d) Does 49 have an multiplicative inverse $(\bmod 7)$?

2. Extended Euclidean Algorithm

(a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.
(b) Now, solve $7 z \equiv 2(\bmod 33)$ for all of its integer solutions z.

3. Euclid's Lemma ${ }^{1}$

(a) Show that if an integer p divides the product of two integers a and b, and $\operatorname{gcd}(p, a)=1$, then p divides b.
(b) Show that if a prime p divides $a b$ where a and b are integers, then $p \mid a$ or $p \mid b$. (Hint: Use part (a))

4. Have we derived yet?

Each of the following proofs has some mistake in its reasoning - identify that mistake.
(a) Proof. If it is sunny, then it is not raining. It is not sunny. Therefore it is raining.
(b) Prove that if $x+y$ is odd, either x or y is odd but not both.

[^0]Proof. Suppose without loss of generality that x is odd and y is even.
Then, $\exists k x=2 k+1$ and $\exists m y=2 m$. Adding these together, we can see that $x+y=2 k+1+2 m=$ $2 k+2 m+1=2(k+m)+1$. Since k and m are integers, we know that $k+m$ is also an integer. So, we can say that $x+y$ is odd. Hence, we have shown what is required.
(c) Prove that $2=1$.:)

Proof. Let a, b be two equal, non-zero integers. Then,

$$
\begin{aligned}
a & =b \\
a^{2} & =a b \\
a^{2}-b^{2} & =a b-b^{2} \\
(a-b)(a+b) & =b(a-b) \\
a+b & =b \\
b+b & =b \\
2 b & =b \\
2 & =1
\end{aligned}
$$

[Multiply both sides by a] [Subtract b^{2} from both sides] [Factor both sides]
[Divide both sides by $a-b$]
[Since $a=b$]
[Simplify]
[Divide both sides by b]
(d) Prove that $\sqrt{3}+\sqrt{7}<\sqrt{20}$

Proof.

$$
\begin{aligned}
& \sqrt{3}+\sqrt{7}<\sqrt{20} \\
& (\sqrt{3}+\sqrt{7})^{2}<20 \\
& 3+2 \sqrt{21}+7<20 \\
& 19.165<20
\end{aligned}
$$

It is true that $19.165<20$, hence, we have shown that $\sqrt{3}+\sqrt{7}<\sqrt{20}$

[^0]: ${ }^{1}$ these proofs aren't much longer than proofs you've seen so far, but it can be a little easier to get stuck - use these as a chance to practice how to get unstuck if you do!

