
Section 06: Solutions

1. A Horse of a Different Color

Did you know that all dogs are named Dubs? It’s true. Maybe. Let’s prove it by induction. The key is talking about
groups of dogs, where every dog has the same name.

Let P (i) mean “all groups of i dogs have the same name.” We prove ∀n P (n) by induction on n.

Base Case: P (1) Take an arbitrary group of one dog, all dogs in that group all have the same name (there’s only
the one, so it has the same name as itself).

Inductive Hypothesis: Suppose P (k) holds for some arbitrary k.

Inductive Step: Consider an arbitrary group of k + 1 dogs. Arbitrarily select a dog, D, and remove it from the
group. What remains is a group of k dogs. By inductive hypothesis, all k of those dogs have the same name.
Add D back to the group, and remove some other dog D′. We have a (different) group of k dogs, so the
inductive hypothesis applies again, and every dog in that group also shares the same name. All k + 1 dogs
appeared in at least one of the two groups, and our groups overlapped, so all of our k+1 dogs have the same
name, as required.

Conclusion: We conclude P (n) holds for all n by the principle of induction.

Recalling that Dubs is a dog, we have that every dog must have the same name as him, so every dog is named
Dubs.

This proof cannot be correct (the proposed claim is false). Where is the bug?

Solution:

The bug is in the final sentence of the inductive step. We claimed that the groups overlapped, i.e. that some
dog was in both of them. That’s true for large k, but not when k + 1 = 2. When k = 2, D is in a group by itself,
and D′ was in a group by itself. The inductive hypothesis holds (D has the only name in its subgroup, and D′

has the only name in its subgroup) but returning to the full group {D,D′} we cannot conclude that they share
a name.

From there everything unravels. P (1) 6→ P (2), so we cannot use the principle of induction. It turns out this is
the only bug in the proof. The argument in the inductive step is correct as long as k+1 > 2. But that implication
is always vacuous, since P (2) is false.

2. Induction with Equality

(a) Show using induction that 0 + 1 + 2 + · · ·+ n = n(n+1)
2 for all n ∈ N.

Solution:

For n ∈ N let P (n) be “0 + 1 + · · ·+ n = n(n+1)
2 ”. We show P (n) for all n ∈ N by induction on n.

Base Case: We have 0 = 0(0+1)
2 which is P (0) so the base case holds.

Inductive Hypothesis: Suppose P (k) holds for some arbitrary integer k ≥ 0.

Inductive Step: Goal: Show 0 + 1 + · · ·+ (k + 1) =
(k + 1)(k + 2)

2
.

1



We have

0 + 1 + · · ·+ k + (k + 1) = (0 + 1 + · · ·+ k) + (k + 1)

=
k(k + 1)

2
+ (k + 1) [Inductive Hypothesis]

=
k(k + 1)

2
+

2(k + 1)

2

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
[Factor out (k + 1)]

This proves P (k + 1).

Conclusion: P (n) holds for all n ∈ N by the principle of induction.

(b) Define the triangle numbers as 4n = 1 + 2 + · · ·+ n, where n ∈ N. In part (a) we showed 4n = n(n+1)
2 .

Prove the following equality for all n ∈ N:

03 + 13 + · · ·+ n3 = 42
n

Solution:

First, note that4n = (0+1+2+ · · ·+n). So, we are trying to prove (03+13+ · · ·+n3) = (0+1+ · · ·+n)2.
Let P (n) be the statement:

03 + 13 + · · ·+ n3 = (0 + 1 + · · ·+ n)2.

We prove that P (n) is true for all n ∈ N by induction on n.

Base Case. 03 = 02, so P (0) holds.

Inductive Hypothesis. Suppose that P (k) is true for some arbitrary k ∈ N.

Inductive Step. We show P (k + 1):

03 + 13 + · · · (k + 1)3 = (03 + 13 + · · ·+ k3) + (k + 1)3 [Associativity ]

= (0 + 1 + · · ·+ k)2 + (k + 1)3 [Inductive Hypothesis]

=

(
k(k + 1)

2

)2

+ (k + 1)3 [Part (a)]

= (k + 1)2
(
k2

22
+ (k + 1)

)
[Factor (k + 1)2]

= (k + 1)2
(
k2 + 4k + 4

4

)
[Add via common denominator]

= (k + 1)2
(
(k + 2)2

4

)
[Factor numerator]

=

(
(k + 1)(k + 2)

2

)2

[Take out the square]

= (0 + 1 + · · ·+ (k + 1))2 [Part (a)]

Conclusion: P (n) is true for all n ∈ N by the principle of induction.
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3. Induction with Divides

Prove that 9 | (n3 + (n+ 1)3 + (n+ 2)3) for all n > 1 by induction. Solution:

Let P (n) be “9 | n3 + (n+ 1)3 + (n+ 2)3”. We will prove P (n) for all integers n > 1 by induction.

Base Case (n = 2): 23 + (2 + 1)3 + (2 + 2)3 = 8+ 27 + 64 = 99 = 9 · 11, so 9 | 23 + (2 + 1)3 + (2 + 2)3, so P (2)
holds.

Induction Hypothesis: Assume that 9 | j3 + (j + 1)3 + (j + 2)3 for an arbitrary integer j > 1. Note that this is
equivalent to assuming that j3 + (j + 1)3 + (j + 2)3 = 9k for some integer k by the definition of divides.

Induction Step: Goal: Show 9 | (j + 1)3 + (j + 2)3 + (j + 3)3

(j + 1)3 + (j + 2)3 + (j + 3)3 = (j + 3)3 + 9k − j3 for some integer k [Induction Hypothesis]

= j3 + 9j2 + 27j + 27 + 9k − j3

= 9j2 + 27j + 27 + 9k

= 9(j2 + 3j + 3 + k)

Since j is an integer, j2 + 3j + 3 + k is also an integer. Therefore, by the definition of divides, 9 |
(j + 1)3 + (j + 2)3 + (j + 3)3, so P (j) → P (j + 1) for an arbitrary integer j > 1.

Conclusion: P (n) holds for all integers n > 1 by induction.

4. Induction with Inequality

Prove that 6n+ 6 < 2n for all n ≥ 6. Solution:

Let P (n) be “6n+ 6 < 2n”. We will prove P (n) for all integers n ≥ 6 by induction on n

Base Case (n = 6): 6 · 6 + 6 = 42 < 64 = 26, so P (6) holds.

Inductive Hypothesis: Assume that 6k + 6 < 2k for an arbitrary integer k ≥ 6.

Inductive Step: Goal: Show 6(k + 1) + 6 < 2k+1

6(k + 1) + 6 = 6k + 6 + 6

< 2k + 6 [Inductive Hypothesis]

< 2k + 2k [Since 2k > 6, since k ≥ 6]

= 2 · 2k

= 2k+1

So P (k) → P (k + 1) for an arbitrary integer k ≥ 6.

Conclusion: P (n) holds for all integers n ≥ 6 by the principle of induction.

5. Induction with Formulas

These problems are a little more difficult and abstract. Try making sure you can do all the other problems before
trying these ones.

(a) (i) Show that given two sets A and B that A ∪B = A ∩B. (Don’t use induction.)

Solution:
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Let x be arbitrary. Then,

x ∈ A ∪B ≡ ¬(x ∈ A ∪B) [Definition of complement]

≡ ¬(x ∈ A ∨ x ∈ B) [Definition of union]

≡ ¬(x ∈ A) ∧ ¬(x ∈ B) [De Morgan’s Laws]

≡ x ∈ A ∧ x ∈ B [Definition of complement]

≡ x ∈ (A ∩B) [Definition of intersection]

Since x was arbitrary we have that x ∈ A ∪B if and only if x ∈ A ∩ B for all x. By the definition of
set equality we’ve shown,

A ∪B = A ∩B.

(ii) Show using induction that for an integer n ≥ 2, given n sets A1, A2, . . . , An−1, An that

A1 ∪A2 ∪ · · · ∪An−1 ∪An = A1 ∩A2 ∩ · · · ∩An−1 ∩An

Solution:

Let P (n) be “given n sets A1, A2, . . . , An−1, An it holds that A1 ∪A2 ∪ · · · ∪An = A1 ∩ A2 ∩ · · · ∩
An−1 ∩An.” We show P (n) for all integers n ≥ 2 by induction on n.

Base Case: P (2) says that for two sets A1 and A2 that A1 ∪A2 = A1 ∩A2, which is exactly part (a)
so P (2) holds.

Inductive Hypothesis: Suppose that P (k) holds for some arbitrary integer k ≥ 2.

Inductive Step: Let A1, A2, . . . , Ak, Ak+1 be sets. Then by part (a) we have,

(A1 ∪A2 ∪ · · · ∪Ak) ∪Ak+1 = A1 ∪A2 ∪ · · · ∪Ak ∩Ak+1.

By the inductive hypothesis we have A1 ∪A2 ∪ · · ·Ak = A1 ∩A2 ∩ · · · ∩Ak. Thus,

A1 ∪A2 ∪ · · · ∪Ak ∩Ak+1 = (A1 ∩A2 ∩ · · ·Ak) ∩Ak+1.

We’ve now shown

A1 ∪A2 ∪ · · · ∪Ak ∪Ak+1 = A1 ∩A2 ∩ · · ·Ak ∩Ak+1.

which is exactly P (k + 1).

Conclusion P (n) holds for all integers n ≥ 2 by the principle of induction.

(b) (i) Show that given any integers a, b, and c, if c | a and c | b, then c | (a+ b). (Don’t use induction.)

Solution:

Let a, b, and c be arbitrary integers and suppose that c | a and c | b. Then by definition there exist
integers j and k such that a = jc and b = kc. Then a + b = jc + kc = (j + k)c. Since j + k is an
integer, by definition we have c | (a+ b).

(ii) Show using induction that for any integer n ≥ 2, given n numbers a1, a2, . . . , an−1, an, for any integer c
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such that c | ai for i = 1, 2, . . . , n, that

c | (a1 + a2 + · · ·+ an−1 + an).

In other words, if a number divides each term in a sum then that number divides the sum.

Solution:

Let P (n) be “given n numbers a1, a2, . . . , an−1, an, for any integer c such that c | ai for i = 1, 2, . . . , n,
it holds that c | (a1 + a2 + · · ·+ an).” We show P (n) holds for all integer n ≥ 2 by induction on n.

Base Case: P (2) says that given two integers a1 and a2, for any integer c such that c | a1 and c | a2
it holds that c | (a1 + a2). This is exactly part (a) so P (2) holds.

Inductive Hypothesis: Suppose that P (k) holds for some arbitrary integer k ≥ 2.

Inductive Step: Let a1, a2, . . . , ak, ak+1 be k + 1 integers. Let c be arbitrary and suppose that c | ai
for i = 1, 2, . . . , k + 1. Then we can write

a1 + a2 + · · ·+ ak + ak+1 = (a1 + a2 + · · ·+ ak) + ak+1.

The sum a1 + a2 + · · · + ak has k terms and c divides all of them, meaning we can apply the
inductive hypothesis. It says that c | (a1+a2+ · · ·+ak). Since c | (a1+a2+ · · ·+ak) and c | ak+1,
by part (a) we have,

c | (a1 + a2 + · · ·+ ak + ak+1).

This shows P (k + 1).

Conclusion: P (n) holds for all integers n ≥ 2 by induction the principle of induction.

6. Cantelli’s Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function
f :

f(0) = 0

f(1) = 1

f(n) = 2f(n− 1)− f(n− 2) for n ≥ 2

Determine, with proof, the number, f(n), of rabbits that Cantelli owns in year n. That is, construct a formula for
f(n) and prove its correctness.

Solution:

Let P (n) be “f(n) = n”. We prove that P (n) is true for all n ∈ N by strong induction on n.

Base Cases (n = 0, n = 1): f(0) = 0 and f(1) = 1 by definition.

Inductive Hypothesis: Assume that P (0) ∧ P (1) ∧ . . . P (k) hold for some arbitrary k ≥ 1.

Inductive Step: We show P (k + 1):

f(k + 1) = 2f(k)− f(k − 1) [Definition of f]

= 2(k)− (k − 1) [Induction Hypothesis]

= k + 1 [Algebra]

Conclusion: P (n) is true for all n ∈ N by principle of strong induction.
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