
Section 07: Solutions

1. Structural Induction

(a) Consider the following recursive definition of strings.

Basis Step: "" is a string

Recursive Step: If X is a string and c is a character then append(c,X) is a string.

Recall the following recursive definition of the function len:

len("") = 0

len(append(c,X)) = 1 + len(X)

Now, consider the following recursive definition:

double("") = ""

double(append(c,X)) = append(c, append(c,double(X))).

Prove that for any string X, len(double(X)) = 2len(X).

Solution:

For a string X, let P(X) be “len(double(X)) = 2len(X)”. We prove P(X) for all strings X by structural
induction on X.

Base Case (X = ""): By definition, len(double("")) = len("") = 0 = 2 · 0 = 2len(""), so P("") holds

Inductive Hypothesis: Suppose P(X) holds for some arbitrary string X.

Inductive Step: Goal: Show that P(append(c,X)) holds for any character c.

len(double(append(c,X))) = len(append(c, append(c,double(X)))) [By Definition of double]

= 1 + len(append(c,double(X))) [By Definition of len]

= 1 + 1 + len(double(X)) [By Definition of len]

= 2 + 2len(X) [By IH]

= 2(1 + len(X)) [Algebra]

= 2(len(append(c,X))) [By Definition of len]

This proves P(append(c,X)).

Conclusion: P(X) holds for all strings X by structural induction.

(b) Consider the following definition of a (binary) Tree:

Basis Step: • is a Tree.

Recursive Step: If L is a Tree and R is a Tree then Tree(•, L,R) is a Tree.

The function leaves returns the number of leaves of a Tree. It is defined as follows:

leaves(•) = 1

leaves(Tree(•, L,R)) = leaves(L) + leaves(R)

1

Also, recall the definition of size on trees:

size(•) = 1

size(Tree(•, L,R)) = 1 + size(L) + size(R)

Prove that leaves(T) ≥ size(T)/2 + 1/2 for all Trees T .

Solution:

For a tree T , let P be leaves(T) ≥ size(T)/2 + 1/2. We prove P for all trees T by structural induction on
T .

Base Case (T = •): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. So, leaves(•) = 1 ≥
1/2 + 1/2 = size(•)/2 + 1/2, so P(•) holds.

Inductive Hypothesis: Suppose P(L) and P(R) hold for some arbitrary trees L,R.

Inductive Step: Goal: Show that P(Tree(•, L,R)) holds.

leaves(Tree(•, L,R)) = leaves(L) + leaves(R) [By Definition of leaves]
≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) [By IH]

= (1/2 + size(L)/2 + size(R)/2) + 1/2 [By Algebra]

=
1 + size(L) + size(R)

2
+ 1/2 [By Algebra]

= size(T)/2 + 1/2 [By Definition of size]

This proves P(Tree(•, L,R)).

Conclusion: Thus, P(T) holds for all trees T by structural induction.

(c) Prove the previous claim using strong induction. Define P (n) as “all trees T of size n satisfy leaves(T) ≥
size(T)/2 + 1/2”. You may use the following facts:

• For any tree T we have size(T) ≥ 1.

• For any tree T , size(T) = 1 if and only if T = •.

If we wanted to prove these claims, we could do so by structural induction.

Note, in the inductive step you should start by letting T be an arbitrary tree of size k + 1.

Solution:

Let P (n) be “all trees T of size n satisfy leaves(T) ≥ size(T)/2 + 1/2”. We show P (n) for all integers
n ≥ 1 by strong induction on n.

Base Case: Let T be an arbitrary tree of size 1. The only tree with size 1 is •, so T = •. By definition,
leaves(T) = leaves(•) = 1 and thus size(T) = 1 = 1/2 + 1/2 = size(T)/2 + 1/2. This shows the
base case holds.

Inductive Hypothesis: Suppose that P (j) holds for all integers j = 1, 2, . . . , k for some arbitrary integer
k ≥ 1.

Inductive Step: Let T be an arbitrary tree of size k + 1. Since k + 1 > 1, we must have T 6= •. It follows
from the definition of a tree that T = Tree(•, L,R) for some trees L and R. By definition, we have
size(T) = 1+ size(L)+ size(R). Since sizes are non-negative, this equation shows size(T) > size(L)
and size(T) > size(R) meaning we can apply the inductive hypothesis. This says that leaves(L) ≥
size(L)/2 + 1/2 and leaves(R) ≥ size(R)/2 + 1/2.

2

We have,

leaves(T) = leaves(Tree(•, L,R))

= leaves(L) + leaves(R) [By Definition of leaves]
≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) [By IH]

= (1/2 + size(L)/2 + size(R)/2) + 1/2 [By Algebra]

=
1 + size(L) + size(R)

2
+ 1/2 [By Algebra]

= size(T)/2 + 1/2 [By Definition of size]

This shows P (k + 1).

Conclusion: P (n) holds for all integers n ≥ 1 by the principle of strong induction.

Note, this proves the claim for all trees because every tree T has some size s ≥ 1. Then P (s) says that all
trees of size s satisfy the claim, including T .

2. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

Solution:

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗)

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

Solution:

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗0)

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the substring
“000”.

Solution:

(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)111(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)

3. CFGs

(a) All binary strings that end in 00.
Solution:

S → 0S | 1S | 00

3

(b) All binary strings that contain at least three 1’s.
Solution:

S → TTT

T → 0T | T0 | 1T | 1

(c) All binary strings with an equal number of 1’s and 0’s.
Solution:

S → 0S1S | 1S0S | ε

and
S → SS | 0S1 | 1S0 | ε

both work. Note: The fact that all the strings generated have the property is easy to show (by induction)
but the fact that one can generate all strings with the property is trickier. To argue this that each of these
is grammars is enough one would need to consider how the difference between the # of 0’s seen and the
of 1’s seen occurs in prefixes of any string with the property.

4. Walk the Dawgs

Suppose a dog walker takes care of n ≥ 12 dogs. The dog walker is not a strong person, and will walk dogs in
groups of 3 or 7 at a time (every dog gets walked exactly once). Prove the dog walker can always split the n dogs
into groups of 3 or 7.

Solution:

Let P (n) be “a group with n dogs can be split into groups of 3 or 7 dogs.” We will prove P (n) for all natural
numbers n ≥ 12 by strong induction.

Base Cases n = 12, 13, 14, or 15: 12 = 3 + 3 + 3 + 3, 13 = 3 + 7 + 3, 14 = 7 + 7, So P (12), P (13), and
P (14) hold.

Inductive Hypothesis: Assume that P (12), . . . , P (k) hold for some arbitrary k ≥ 14.

Inductive Step: Goal: Show k + 1 dogs can be split into groups of size 3 or 7.
We first form one group of 3 dogs. Then we can divide the remaining k−2 dogs into groups of 3 or 7 by
the assumption P (k−2). (Note that k ≥ 14 and so k−2 ≥ 12; thus, P (k−2) is among our assumptions
P (12), . . . , P (k).)

Conclusion: P (n) holds for all integers n ≥ 12 by by principle of strong induction.

5. Reversing a Binary Tree

Consider the following definition of a (binary) Tree.

Basis Step Nil is a Tree.

Recursive Step If L is a Tree, R is a Tree, and x is an integer, then Tree(x, L,R) is a Tree.

The sum function returns the sum of all elements in a Tree.

sum(Nil) = 0

sum(Tree(x, L,R)) = x+ sum(L) + sum(R)

4

The following recursively defined function produces the mirror image of a Tree.

reverse(Nil) = Nil

reverse(Tree(x, L,R)) = Tree(x, reverse(R), reverse(L))

Show that, for all Trees T that
sum(T) = sum(reverse(T))

Solution:

For a Tree T , let P (T) be “sum(T) = sum(reverse(T))”. We show P (T) for all Trees T by structural induction.

Base Case: By definition we have reverse(Nil) = Nil. Applying sum to both sides we get sum(Nil) =
sum(reverse(Nil)), which is exactly P (Nil), so the base case holds.

Inductive Hypothesis: Suppose P (L) and P (R) hold for some arbitrary Trees L and R.

Inductive Step: Let x be an arbitrary integer. Goal: Show P (Tree(x, L,R)) holds.

We have,

sum(reverse(Tree(x, L,R))) = sum(Tree(x, reverse(R), reverse(L))) [Definition of reverse]

= x+ sum(reverse(R)) + sum(reverse(L)) [Definition of sum]

= x+ sum(R) + sum(L) [Inductive Hypothesis]

= x+ sum(L) + sum(R) [Commutativity]

= sum(Tree(x, L,R)) [Definition of sum]

This shows P (Tree(x, L,R)).

Conclusion: Therefore, P (T) holds for all Trees T by structural induction.

6. Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify
that your solution is correct.

(a) Binary strings of even length.

Solution:

Basis: ε ∈ S.
Recursive Step: If x ∈ S, then x00, x01, x10, x11 ∈ S.
Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the
recursive step.

“Brief ” Justification: We will show that x ∈ S iff x has even length (i.e.,|x|= 2n for some n ∈ N). (Note:
“brief” is in quotes here. Try to write shorter explanations in your homework assignment when possible!)

Suppose x ∈ S. If x is the empty string, then it has length 0, which is even. Otherwise, x is built up from
the empty string by repeated application of the recursive step, so it is of the form x1x2...xn, where each
xi ∈ {00, 01, 10, 11}. In that case, we can see that |x|=|x1|+|x2|+···+|xn|= 2n, which is even. Now,
suppose that x has even length. If it’s length is zero, then it is the empty string, which is in S. Otherwise,
it has length 2n for some n > 0, and we can write x in the form x1x2...xn, where each xi ∈ {00, 01, 10, 11}
has length 2. Hence, we can see that x can be built up from the empty string by applying the recursive
step with x1, then x2, and so on up to xn, which shows that x ∈ S.

5

(b) Binary strings not containing 10.

Solution:

If the string does not contain 10, then the first 1 in the string can only be followed by more 1s. Hence, it
must be of the form 0m1n for some m,n ∈ N.

Basis: ε ∈ S.

Recursive Step: If x ∈ S, then 0x ∈ S and x1 ∈ S.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the
recursive step.

Brief Justification: The empty string satisfies the property, and the recursive step cannot place a 0 after a
1 since it only adds 0s on the left. Hence, every string in S satisfies the property.

In the other direction, from our discussion above, any string of this form can be written as y = 0m1n for
some m,n ∈ N. We can build up the string y from the empty string by applying the rule x → 0x m times
and then applying the rule x → x1 n times. This shows that the string y is in S.

(c) Binary strings not containing 10 as a substring and having at least as many 1s as 0s.

Solution:

These must be of the form 0m1n for some m,n ∈ N with m ≤ n. We can ensure that by pairing up the 0s
with 1s as they are added:

Basis: ε ∈ S.

Recursive Step: If x ∈ S, then 0x1 ∈ S and x1 ∈ S.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the
recursive step.

Brief Justification: As in the previous part, we cannot add a 0 after a 1 because we only add 0s at the front.
And since every 0 comes with a 1, we always have at least as many 1s as 0s.

In the other direction, from our discussion above, any string of this form can be written as xy, where
x = 0m1m and y = 1n−m, since n ≥ m. We can build up the string x from the empty string by applying
the rule x → 0x1 m times and then produce the string xy by applying the rule x → x1 n−m times, which
shows that the string is in S.

(d) Binary strings containing at most two 0s and at most two 1s.

Solution:

This is the set of all binary strings of length at most 4 except for these:

000, 1000, 0100, 0010, 0001, 0000, 111, 0111, 1011, 1101, 1110, 1111

Since this is a finite set, we can define it recursively using only basis elements and no recursive step.

6

	1 Structural Induction
	2 Regular Expressions
	3 CFGs
	4 Walk the Dawgs
	5 Reversing a Binary Tree
	6 Recursively Defined Sets of Strings

