Section 08: Solutions

1. Relations

(a) Draw the transitive-reflexive closure of $\{(1,2),(2,3),(3,4)\}$. **Solution:**

(b) Suppose that R is reflexive. Prove that $R \subseteq R^2$.

Solution:

Suppose $(a,b) \in R$. Since R is reflexive, we know $(b,b) \in R$ as well. Since there is a b such that $(a,b) \in R$ and $(b,b) \in R$, it follows that $(a,b) \in R^2$. Thus, $R \subseteq R^2$.

(c) Consider the relation $R = \{(x,y) : x = y+1\}$ on \mathbb{N} . Is R reflexive? Transitive? Symmetric? Anti-symmetric? Solution:

It isn't reflexive, because $1 \neq 1+1$; so, $(1,1) \notin R$. It isn't symmetric, because $(2,1) \in R$ (because 2=1+1), but $(1,2) \notin R$, because $1 \neq 2+1$. It isn't transitive, because note that $(3,2) \in R$ and $(2,1) \in R$, but $(3,1) \notin R$. It is anti-symmetric, because consider $(x,y) \in R$ such that $x \neq y$. Then, x=y+1 by definition of R. However, $(y,x) \notin R$, because $y=x-1 \neq x+1$.

(d) Consider the relation $S=\{(x,y): x^2=y^2\}$ on $\mathbb R$. Prove that S is reflexive, transitive, and symmetric. Solution:

Consider $x \in \mathbb{R}$. Note that by definition of equality, $x^2 = x^2$; so, $(x, x) \in S$; so, S is reflexive.

Consider $(x,y) \in S$. Then, $x^2 = y^2$. It follows that $y^2 = x^2$; so, $(y,x) \in S$. So, S is symmetric.

Suppose $(x,y) \in S$ and $(y,z) \in S$. Then, $x^2 = y^2$, and $y^2 = z^2$. Since equality is transitive, $x^2 = z^2$. So, $(x,z) \in S$. So, S is transitive.

1

2. DFAs, Stage 1

Construct DFAs to recognize each of the following languages. Let $\Sigma = \{0, 1, 2, 3\}$.

(a) All binary strings.

Solution:

 q_0 : binary strings

 q_1 : strings that contain a character which is not 0 or 1.

(b) All strings whose digits sum to an even number.

Solution:

(c) All strings whose digits sum to an odd number.

Solution:

3. DFAs, Stage 2

Construct DFAs to recognize each of the following languages. Let $\Sigma = \{0, 1\}$.

(a) All strings which do not contain the substring 101.

Solution:

 q_3 : string that contain 101.

 q_2 : strings that don't contain 101 and end in 10.

 q_1 : strings that don't contain 101 and end in 1.

 q_0 : ε , 0, strings that don't contain 101 and end in 00.

(b) All strings containing at least two 0's and at most one 1. **Solution:**

(c) All strings containing an even number of 1's and an odd number of 0's and not containing the substring 10. **Solution:**

4. Relations and Strings

Let $\Sigma = \{0,1\}$ and define the relation \diamond on Σ^* by $x \diamond y$ if and only if the length of xy is even. (Here $x \diamond y$ is another way of writing $(x,y) \in \diamond$.) Prove that \diamond is reflexive, symmetric, and transitive.

Solution:

Reflexivity: Consider $a \in \Sigma^*$. Case 1: The length of a is odd. Length(aa) = even. Case 2: The length of a is even. Length(aa) = even. So, $a \diamond a$ and \diamond is reflexive.

Symmetric: Suppose $a \diamond b$. Then, the length of ab is even. Length of ba is the same as length ab. So, the length of ba is even. So, $b \diamond a$ and ϕ is symmetric.

Transitivity: Suppose $a \diamond b$ and $b \diamond c$. Then, the length of ab is even and the length of bc is even.

Case 1: The length of a and b are even. Then, the length of c must also be even, since bc has even length. Then, a and c have even length, so ac has even length.

Case 2: The length of a and b are odd. Then, the length of c must also be odd, since bc has even length. Then, a and c have odd length, so ac has even length.

So, $a \diamond c$ and \diamond is transitive.