Section 08: Solutions

1. Relations

(a) Draw the transitive-reflexive closure of $\{(1,2),(2,3),(3,4)\}$.

Solution:

(b) Suppose that R is reflexive. Prove that $R \subseteq R^{2}$. Solution:

Suppose $(a, b) \in R$. Since R is reflexive, we know $(b, b) \in R$ as well. Since there is a b such that $(a, b) \in R$ and $(b, b) \in R$, it follows that $(a, b) \in R^{2}$. Thus, $R \subseteq R^{2}$.
(c) Consider the relation $R=\{(x, y): x=y+1\}$ on \mathbb{N}. Is R reflexive? Transitive? Symmetric? Anti-symmetric? Solution:

It isn't reflexive, because $1 \neq 1+1$; so, $(1,1) \notin R$. It isn't symmetric, because $(2,1) \in R$ (because $2=1+1)$, but $(1,2) \notin R$, because $1 \neq 2+1$. It isn't transitive, because note that $(3,2) \in R$ and $(2,1) \in R$, but $(3,1) \notin R$. It is anti-symmetric, because consider $(x, y) \in R$ such that $x \neq y$. Then, $x=y+1$ by definition of R. However, $(y, x) \notin R$, because $y=x-1 \neq x+1$.
(d) Consider the relation $S=\left\{(x, y): x^{2}=y^{2}\right\}$ on \mathbb{R}. Prove that S is reflexive, transitive, and symmetric. Solution:

Consider $x \in \mathbb{R}$. Note that by definition of equality, $x^{2}=x^{2}$; so, $(x, x) \in S$; so, S is reflexive.

Consider $(x, y) \in S$. Then, $x^{2}=y^{2}$. It follows that $y^{2}=x^{2}$; so, $(y, x) \in S$. So, S is symmetric.
Suppose $(x, y) \in S$ and $(y, z) \in S$. Then, $x^{2}=y^{2}$, and $y^{2}=z^{2}$. Since equality is transitive, $x^{2}=z^{2}$. So, $(x, z) \in S$. So, S is transitive.

2. DFAs, Stage 1

Construct DFAs to recognize each of the following languages. Let $\Sigma=\{0,1,2,3\}$.
(a) All binary strings.

Solution:

q_{0} : binary strings
q_{1} : strings that contain a character which is not 0 or 1 .
(b) All strings whose digits sum to an even number.

Solution:

(c) All strings whose digits sum to an odd number.

Solution:

3. DFAs, Stage 2

Construct DFAs to recognize each of the following languages. Let $\Sigma=\{0,1\}$.
(a) All strings which do not contain the substring 101.

Solution:

$q_{3}:$ string that contain 101.
q_{2} : strings that don't contain 101 and end in 10.
q_{1} : strings that don't contain 101 and end in 1.
$q_{0}: \varepsilon, 0$, strings that don't contain 101 and end in 00 .
(b) All strings containing at least two 0's and at most one 1. Solution:

(c) All strings containing an even number of 1 's and an odd number of 0 's and not containing the substring 10. Solution:

4. Relations and Strings

Let $\Sigma=\{0,1\}$ and define the relation \diamond on Σ^{*} by $x \diamond y$ if and only if the length of $x y$ is even. (Here $x \diamond y$ is another way of writing $(x, y) \in \diamond$.) Prove that \diamond is reflexive, symmetric, and transitive.

Solution:

Reflexivity: Consider $a \in \Sigma^{*}$. Case 1: The length of a is odd. Length(aa) = even. Case 2: The length of a is even. Length(aa) $=$ even. So, $a \diamond a$ and \diamond is reflexive.

Symmetric: Suppose $a \diamond b$. Then, the length of ab is even. Length of ba is the same as length ab . So, the length of ba is even. So, $b \diamond a$ and \diamond is symmetric.

Transitivity: Suppose $a \diamond b$ and $b \diamond c$. Then, the length of ab is even and the length of bc is even.

Case 1: The length of a and b are even. Then, the length of c must also be even, since $b c$ has even length. Then, a and c have even length, so ac has even length.
Case 2: The length of a and b are odd. Then, the length of c must also be odd, since bc has even length. Then, a and c have odd length, so ac has even length.

So, $a \diamond c$ and \diamond is transitive.

