Contrapositive

We showed $a \rightarrow b \equiv \neg b \rightarrow \neg a$ with a truth table. Let's do a proof.

Try this one on your own. Remember

- 1. Know what you're trying to show.
- 2. Stay on target take steps to get closer to your goal.

Hint: think about your tools. There are lots of rules with AND/OR/NOT, but very few with implications...

Properties of Logical Connectives

We will always give you this list!

For every propositions a, b, r the following hold:

- Identity
 - $a \wedge T \equiv a$
 - $a \vee F \equiv a$
- Domination
 - $a \wedge F \equiv F$
 - $a \lor T \equiv T$
- Idempotent
 - $a \lor a \equiv a$
 - $a \wedge a \equiv a$
- Communitative
 - $a \wedge b \equiv b \wedge a$
 - $a \lor b \equiv b \lor a$

- Associative
 - $(a \lor b) \lor r \equiv a \lor (b \lor r)$
 - $(a \wedge b) \wedge r \equiv a \wedge (b \wedge r)$
- Distributive
 - $a \wedge (b \vee r) \equiv (a \wedge b) \vee (a \wedge r)$
 - $a \lor (b \land r) \equiv (a \lor \land b) \land (a \lor r)$
- Absorption
 - $a \lor (a \land b) \equiv a$
 - $a \wedge (a \vee b) \equiv a$
- Negation
 - $a \lor \neg a \equiv T$
 - $a \land \neg a \equiv F$