# Unalike Nested Quantifiers and New Proof Strategies

#### First:

• We didn't quite finish the lecture that was Friday's. So, please mark on your calendar to:

- Find the remaining lecture on Canvas under Panopto-> Additional lecture material
- Take the additional Canvas quiz.

#### And now:

A new way of thinking of proofs:

- Here's one way to get an iron-clad guarantee:
- 1. Write down all the facts we know.
- 2. Combine the things we know to derive new facts.
- 3. Continue until what we want to show is a fact.

# Drawing Conclusions

- You know "If it is raining, then I have my umbrella"
- And "It is raining"
  | have my umbrella!
  You should conclude....

 For whatever you conclude, convert the statement to propositional logic – will your statement hold for any propositions, or is it specific to raining and umbrellas?

```
I know (a \rightarrow b) and a, I can conclude b
Or said another way: [(a \rightarrow b) \land a] \rightarrow b
```

#### Modus Ponens

• The inference from the last slide is always valid. I.e.

$$[(a \to b) \land a] \to b \equiv T$$

# Modus Ponens – a formal proof

$$[(a \rightarrow b) \land a] \rightarrow b \equiv [(\neg a \lor b) \land a] \rightarrow b$$
 Law of Implication 
$$\equiv [a \land (\neg a \lor b)] \rightarrow b$$
 Commutativity 
$$\equiv [(a \land \neg a) \lor (a \land b)] \rightarrow b$$
 Distributivity 
$$\equiv [F \lor (a \land b)] \rightarrow b$$
 Negation 
$$\equiv [(a \land b)] \rightarrow b$$
 Commutativity 
$$\equiv [(a \land b)] \rightarrow b$$
 Identity 
$$\equiv [\neg (a \land b)] \lor b$$
 Law of Implication 
$$\equiv [\neg a \lor \neg b] \lor b$$
 DeMorgan's Law 
$$\equiv \neg a \lor [\neg b \lor b]$$
 Associativity 
$$\equiv \neg a \lor [b \lor \neg b]$$
 Commutativity 
$$\equiv \neg a \lor [b \lor \neg b]$$
 Commutativity 
$$\equiv \neg a \lor [b \lor \neg b]$$
 Negation 
$$\equiv T$$
 Domination

#### Modus Ponens

• The inference from the last slide is always valid. I.e.

$$[(a \to b) \land a] \to b \equiv T$$

We use that inference A LOT

So often people gave it a name ("Modus Ponens")

So often...we don't have time to repeat that 12 line proof EVERY TIME.

Let's make this another law we can apply in a single step.

Just like refactoring a method in code.

#### Notation – Laws of Inference

- We're using the "→" symbol A LOT.
- Too much

Some new notation to make our lives easier.

If we know **both** A and B A, B  $\therefore$  We can conclude any (or all) of C, D  $\therefore$  C, D

":" means "therefore" – I knew A, B therefore I can conclude C, D.

 $a \rightarrow b, a$  Modus Ponens, i.e.  $[(a \rightarrow b) \land a] \rightarrow b),$  in our new notation.

#### **Another Proof**

- Let's keep going.
- I know "If it is raining then I have my umbrella" and "I do not have my umbrella"
   It is not raining!
- I can conclude...
- What's the general form?  $[(a \rightarrow b) \land \neg b] \rightarrow \neg a$
- How do you think the proof will go?
  - If you had to convince a friend of this claim in English, how would you do it?

# A proof!

We know  $a \rightarrow b$  and  $\neg b$ ; we want to conclude  $\neg a$ .

Let's try to prove it. Our goal is to list facts until our goal becomes a fact.

We'll number our facts, and put a justification for each new one.

# A proof!

We know  $a \rightarrow b$  and  $\neg b$ ; we want to conclude  $\neg a$ .

Let's try to prove it. Our goal is to list facts until our goal becomes a fact.

We'll number our facts, and put a justification for each new one.

- 1.  $a \rightarrow b$  Given
- $2. \neg b$  Given
- 3.  $\neg b \rightarrow \neg a$  Contrapositive of 1.
- 4.  $\neg a$  Modus Ponens on 3,2.

# Try it yourselves

• Suppose you know  $a \to b, \neg s \to \neg b$ , and a. Give an argument to conclude s.

Fill out the poll everywhere for Activity Credit!

Go to pollev.com/cse311 and login with your UW identity
Or text cse311 to 22333

# Try it yourselves

• Suppose you know  $a \to b, \neg s \to \neg b$ , and a. Give an argument to conclude s.

|           | Oive an arguin              | cit to conclude 5   |
|-----------|-----------------------------|---------------------|
| <i>1.</i> | $a \rightarrow b$           | Given               |
| <i>2.</i> | $\neg s \rightarrow \neg b$ | Given               |
| 3.        | a                           | Given               |
| 4.        | b                           | Modus Ponens 1,3    |
| <i>5.</i> | $b \rightarrow s$           | Contrapositive of 2 |
| <i>6.</i> | S                           | Modus Ponens 5,4    |

#### More Inference Rules

- We need a couple more inference rules.
- These rules set us up to get facts in exactly the right form to apply the really useful rules.
- A lot like commutativity and distributivity in the propositional logic rules.



#### More Inference Rules

• In total, we have two for  $\Lambda$  and two for V, one to create the connector, and one A:



Eliminate 
$$\vee$$

$$A \lor B, \neg A$$

$$\therefore A \lor B, B \lor A$$

$$\therefore A \lor B, B \lor A$$

None of these rules are surprising, but they are useful.

#### The Direct Proof Rule

• We've been implicitly using another "rule" today, the direct proof rule



This rule is different from the others  $-A \Rightarrow B$  is not a "single fact." It's an observation that we've done a proof. (i.e. that we showed fact B starting from A.)

We will get a lot of mileage out of this rule...starting next time.

#### Caution

- Be careful! Logical inference rules can only be applied to entire facts.
   They cannot be applied to portions of a statement (the way our propositional rules could). Why not?
- Suppose we know  $a \rightarrow b$ , r. Can we conclude b?

1. 
$$a \rightarrow b$$

Given

Given

2. r

Introduce V (1)

 $3. (a \lor r) \rightarrow b$ 

Introduce V (2)

4. a \( \tau \) r

Modus Ponens 3,4.

5. b



#### One more Proof

• Show if we know:  $a, b, [(a \land b) \rightarrow (r \land s)], r \rightarrow t$  we can conclude t.

#### One more Proof

• Show if we know:  $a, b, [(a \land b) \rightarrow (r \land s)], r \rightarrow t$  we can conclude t.

| <i>1.</i> | a                                       | Given              |
|-----------|-----------------------------------------|--------------------|
| <i>2.</i> | b                                       | Given              |
| <i>3.</i> | $[(a \land b) \rightarrow (r \land s)]$ | Given              |
| <i>4.</i> | $r \rightarrow t$                       | Given              |
| <i>5.</i> | $a \wedge b$                            | Intro ∧ (1,2)      |
| <i>6.</i> | $r \wedge s$                            | Modus Ponens (3,5) |
| <i>7.</i> | r                                       | Eliminate ∧ (6)    |
| 8.        | t                                       | Modus Ponens (4,7) |

#### Inference Rules

Eliminate 
$$\land$$

$$A \land B$$

$$A \land B$$

$$A \land B$$

Eliminate V
$$\therefore B$$

$$A \lor B, \neg A$$

$$\therefore B$$
Intro  $\land$ 

$$A \land B$$

$$A$$
Intro  $\vee$ 

$$\therefore A \vee B, B \vee A$$

$$\begin{array}{c} A \Rightarrow B \\ \hline \text{rule} \\ A \rightarrow B \end{array}$$

You can still use all the propositional logic equivalences too!

Warm up

Negate the following sentence, and translate both the original and the negation into predicate logic.

Domain of Discourse: Java programs.

If a program throwse experiment the appropriate invalid input. (predicates: Throwsexception, HasBug, BadInput

#### Announcements

- Remember to sign up for canvas groups for your lecture breakouts.
- If you don't have a group already, you can join a not-full-one at random.
- We'll try on Friday

- Proof checking tool: <a href="https://homes.cs.washington.edu/~kevinz/proof-test/">https://homes.cs.washington.edu/~kevinz/proof-test/</a>
- Will check your symbolic proofs, so you know if you've applied rules properly. – I do recommend it for rough drafts, I don't recommend for when you're "stuck"

#### **About Grades**

- Grades were critical in your lives up until now.
  - If you were in high school, they're critical for getting into college.
  - If you were at UW applying to CSE, they were key to that application
- Regardless of where you're going next, what you **learn** in this course matters FAR more than what your grade in this course.
- If you're planning on industry interviews matter more than grades.
- If you're planning on grad school letters matter most, those are based on doing work outside of class building off what you learned in class.

#### **About Grades**

- What that means:
- The TAs and I are going to prioritize your learning over debating whether -2 or -1 is "more fair"

- If you're worried about "have I explained enough" write more!
- It'll take you longer to write the Ed question than write the extended answer. We don't take off for too much work.
  - And the extra writing is going to help you learn more anyway.

# Regrades

- TAs make mistakes!
- When I was a TA, I made errors on 1 or 2% of my grading that needed to be corrected. If we made a mistake, file a regrade request on gradescope.
- But those are only for mistakes, not for whether "-1 would be more fair"
- If you are confused, please talk to us!
  - My favorite office hours questions are "can we talk about the best way to do something on the homework we just got back?"
  - If **after** you do a regrade request on gradescope, you still think a grading was incorrect, send email to Robbie.
  - Regrade requests will close 2 weeks after homework is returned.

# Negation

- Negate these sentences in English and translate the original and negation to predicate logic.
- All cats have nine lives.

$$\forall x (Cat(x) \rightarrow NumLives(x, 9))$$

• All dogs love every person. "There is a cat without 9 lives."

$$\forall x \forall y (Dog(x) \land Human(y) \rightarrow Love(x, y))$$

 $\exists x \exists y (Dog(x) \land Human(y) \land \neg Love(x,y))$  "There is a dog who does not love someone." "There is a dog and a person such that the dog doesn't love that person."

• There is a cat that loves someone.

```
\exists x \exists y (Cat(x) \land Human(y) \land Love(x, y))
\forall x \forall y ([Cat(x) \land Human(y)] \rightarrow \neg Love(x, y))
```

"For every cat and every human, the cat does not love that human." "Every cat does not love any human" ("no cat loves any human")

# Negation with Domain Restriction

- $\exists x \exists y (Cat(x) \land Human(y) \land Love(x, y)$
- $\forall x \forall y ([Cat(x) \land Human(y)] \rightarrow \neg Love(x, y))$
- There are lots of equivalent expressions to the second. This one is by far the best because it reflects the domain restriction happening. How did we get there?
  - There's a problem in this week's section handout showing similar algebra.



Translate these sentences using only quantifiers and the predicate AreFriends(x, y)

• Everyone is friends with someone.

Someone is friends with everyone.





Translate these sentences using only quantifiers and the predicate AreFriends(x,y)

• Everyone is friends with someone.





 $\forall x (\exists y \, \text{AreFriends}(x, y))$ 

 $\forall x \exists y \text{ AreFriends}(x, y)$ 



 $\exists x (\forall y \text{ AreFriends}(x, y))$ 

 $\exists x \forall y \text{ AreFriends}(x, y)$ 

- $\forall x \exists y \ a(x,y)$
- "For every x there exists a y such that a(x, y) is true."
- y might change depending on the x (people have different friends!).

#### $\exists x \forall y \ a(x,y)$

"There is an x such that for all y, a(x, y) is true."

There's a special, magical x value so that a(x,y) is true regardless of y.

- Let our domain of discourse be  $\{A, B, C, D, E\}$
- And our proposition a(x, y) be given by the table.
- What should we look for in the table?
- $\exists x \forall y a(x, y)$
- $\forall x \exists y a(x, y)$

| a(x,y) | А | В | С | D | E |
|--------|---|---|---|---|---|
| Α      | Т | Т | Т | Т | Т |
| В      | Т | F | F | Т | F |
| С      | F | Т | F | F | F |
| D      | F | F | F | F | T |
| Е      | F | F | F | Т | F |

- Let our domain of discourse be  $\{A, B, C, D, E\}$
- And our proposition a(x, y) be given by the table.
- What should we look for in the table?
- $\exists x \forall y a(x, y)$
- A row, where every entry is T
- $\forall x \exists y a(x, y)$
- In every row there must be a  $\ensuremath{\mathbb{T}}$



# Keep everything in order

- Keep the quantifiers in the same order in English as they are in the logical notation.
- "There is someone out there for everyone" is a  $\forall x \exists y$  statement in "everyday" English.
- It would **never** be phrased that way in "mathematical English" We'll only every write "for every person, there is someone out there for them."

# Try it yourselves

• Every cat loves some human.



There is a cat that loves every human.



Let your domain of discourse be mammals. Use the predicates Cat(x), Dog(x), and Loves(x,y) to mean x loves y.

# Try it yourselves

• Every cat loves some human.



 $\forall x (Cat(x) \rightarrow \exists y [Human(y) \land Loves(x,y)])$  $\forall x \exists y (Cat(x) \rightarrow [Human(y) \land Loves(x,y)])$ 

There is a cat that loves every human.



 $\exists x (Cat(x) \land \forall y [Human(y) \rightarrow Loves(x,y)])$  $\exists x \forall y (Cat(x) \land [Human(y) \rightarrow Loves(x,y)])$ 

## Negation

- How do we negate nested quantifiers?
- The old rule still applies.

To negate an expression with a quantifier

- 1. Switch the quantifier (∀ becomes ∃, ∃ becomes ∀)
- 2. Negate the expression inside

$$\neg(\forall x \exists y \forall z [a(x,y) \land b(y,z)])$$

$$\exists x (\neg(\exists y \forall z [a(x,y) \land b(y,z)]))$$

$$\exists x \forall y (\neg(\forall z [a(x,y) \land b(y,z)]))$$

$$\exists x \forall y \exists z (\neg[a(x,y) \land b(y,z)])$$

$$\exists x \forall y \exists z [\neg a(x,y) \lor \neg b(y,z)]$$

### More Translation

For each of the following, translate it, then say whether the statement is true. Let your domain of discourse be integers.

For every integer, there is a greater integer. (x, x) can be x + 1 [y depends on x])

There is an integer x, such that for all integers y, xy is equal to 1. that role for every y.)

 $\forall y \exists x (\text{Equal}(x + y, 1))$ 

For every integer, y, there is an integer x such that x + y = 1 (This statement is true, y can depend on x



# Inference Proofs and the Direct Proof Rule

## Inference Rules

Eliminate 
$$\land$$

$$A \land B$$

$$A \land B$$

$$A \land B$$

Eliminate V
$$\therefore B$$

$$A \lor B, \neg A$$

$$A; B$$
Intro  $\land$ 

$$\therefore A \land B$$

$$A \land B$$

$$A \lor B, B \lor A$$

Direct Proof rule 
$$A \Rightarrow B$$

$$A \rightarrow B$$

You can still use all the propositional logic equivalences too!

## How would you argue...

- Let's say you have a piece of code.
- And you think if the code gets null input then a nullPointerExecption will be thrown.
- How would you convince your friend?

- You'd probably trace the code, assuming you would get null input.
- The code was your given
- The null input is an assumption

# In general

• How do you convince someone that  $a \rightarrow b$  is true given some surrounding context/some surrounding givens?

You suppose a is true (you assume a)

- And then you'll show b must also be true.
  - Just from a and the Given information.

#### The Direct Proof Rule

Write a proof "given A conclude B"  $A \to B$ 



This rule is different from the others  $-A \Rightarrow B$  is not a "single fact." It's an observation that we've done a proof. (i.e. that we showed fact B starting from A.)

We will get a lot of mileage out of this rule...starting today!

Given: 
$$((a \rightarrow b) \land (b \rightarrow r))$$

Show: 
$$(a \rightarrow r)$$
• Here's an incorrect proof.

1. 
$$(a \rightarrow b) \land (b \rightarrow r)$$

 $2. \quad a \rightarrow b$ Eliminate  $\Lambda$  (1)

 $3. b \rightarrow r$ 

Eliminate  $\Lambda$  (1)

**4.** a

Given???

Given

5. b

Modus Ponens 4,2

6. r

Modus Ponens 5,3

7.  $a \rightarrow r$ 

Direct Proof Rule

Given: 
$$((a \rightarrow b) \land (b \rightarrow r))$$
  
Show:  $(a \rightarrow r)$ 

Here's an incorrect proof.

1. 
$$(a \rightarrow b) \land (b \rightarrow r)$$

- $2. \quad a \rightarrow b$
- $3. b \rightarrow r$
- **4.** a
- *5. b*
- 6. r
- $a \rightarrow r$

Proofs are supposed to be lists of facts. Some of these "facts" aren't really facts...

Eliminate  $\Lambda$  (1)

Given ????

Modus Ponens 4,2]

Modus Ponens 5,3

Direct Proof Rule

These facts depend on a. But a isn't known generally. It was assumed for the purpose of proving  $a \rightarrow r$ .

Given: 
$$((a \rightarrow b) \land (b \rightarrow r))$$

Show:  $(a \rightarrow r)$ 

Here's an incorrect proof.

1. 
$$(a \rightarrow b) \land (b \rightarrow r)$$

- $2. \quad a \rightarrow b$
- $3. b \rightarrow r$
- **4.** a
- *5. b*
- 6. Y
- 7.  $a \rightarrow r$

Proofs are supposed to be lists of facts. Some of these "facts" aren't really facts...

Eliminate ∧ (1)

Given ????

Modus Ponens 4,2]

Modus Ponens 5,3

Direct Proof Rule

These facts depend on a. But a isn't known generally. It was assumed for the purpose of proving  $a \rightarrow r$ .

Given: 
$$(a \rightarrow b) \land (b \rightarrow r)$$

Show:  $(a \rightarrow r)$ 

Here's a corrected version of the proof.

1. 
$$(a \rightarrow b) \land (b \rightarrow r)$$

- $a \rightarrow b$
- $3. b \rightarrow r$ 
  - 4.1 a
  - 4.2 *b*
  - 4.3 r
- $5. \quad a \rightarrow r$

#### Given

Eliminate ∧ 1 Eliminate ∧ 1

Assumption Modus Ponens 4.1,2 Modus Ponens 4.2,3

#### Direct Proof Rule

When introducing an assumption to prove an implication: Indent, and change numbering.

When reached your conclusion, use the Direct Proof Rule to observe the implication is a fact.

The conclusion is an unconditional fact (doesn't depend on a) so it goes back up a level

Eliminate 
$$\land$$

$$A \land B$$

$$\therefore A, B$$

# Try it!

• Given:  $a \lor b$ ,  $(r \land s) \rightarrow \neg b$ ,

Show:  $s \rightarrow a$ 







You can still use all the propositional logic equivalences too!

## Try it!

```
• Given: a \lor b, (r \land s) \rightarrow \neg b, r.
 1. \text{ Show: } s \to a 
                           Given
(r \land s) \rightarrow \neg b
                           Given
3. r
                           Given
    4.1 s
                        Assumption
    4.2 r \wedge s
                         Intro \Lambda (3,4.1)
    4.3 \neg b
                         Modus Ponens (2, 4.2)
    4.4 b V a
                        Commutativity (1)
    4.5 a
                        Eliminate V (4.4, 4.3)
5. s \rightarrow a
                           Direct Proof Rule
```