Claim: for all $a, b, c, n \in \mathbb{Z}$, $n \ge 0$: $a \equiv b \pmod{n} \rightarrow a + c \equiv b + c \pmod{n}$

Before we start, we must know:

- 1. What every word in the statement means.
- 2. What the statement as a whole means.
- 3. Where to start.
- 4. What your target is.

Divides

For integers x, y we say x|y ("x divides y") iff there is an integer z such that xz = y.

Fill out the poll everywhere for Activity Credit!

Go to pollev.com/cse311 and login with your UW identity
Or text cse311 to 22333

Equivalence in modular arithmetic

Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and n > 0. We say $a \equiv b \pmod{n}$ if and only if n | (b - a)