
Structural Induction
and Regular Expressions 

CSE 311 Autumn 20
Lecture 19

Warm up:
What is the following recursively-defined set?
Basis Step: 4 ∈ 𝑆, 5 ∈ 𝑆
Recursive Step: If 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑆 then 𝑥 − 𝑦 ∈ 𝑆

xkcd.com/208



Announcements
We’ll release solutions to the (hopefully graded) midterm early next week.

Homework 6 will be released on Monday, due the following Monday.



Strings
Why these recursive definitions? 
They’re the basis for regular expressions, which we’ll introduce next 
week. Answer questions like “how do you search for anything that looks 
like an email address”

First, we need to talk about strings.
Σ will be an alphabet the set of all the letters you can use in words.
Σ∗ is the set of all words all the strings you can build off of the letters.



Strings
𝜀 is “the empty string”
The string with 0 characters – “” in Java (not null!)
Σ∗:
Basis: 𝜀 ∈ Σ∗.
Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ then 𝑤𝑎 ∈ Σ∗

𝑤𝑎 means the string of 𝑤 with the character 𝑎 appended.
You’ll also see 𝑤 ⋅ 𝑎 (a ⋅ to mean “concatenate” i.e. + in Java) 



Functions on Strings
Since strings are defined recursively, most functions on strings are as well.
Length:
len(𝜀)=0; 
len(𝑤𝑎)=len(𝑤)+1 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ
Reversal:
𝜀" = 𝜀; 
𝑤𝑎 " = 𝑎𝑤" for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Concatenation
𝑥 ⋅ 𝜀 = 𝑥 for all 𝑥 ∈ Σ∗; 
𝑥 ⋅ 𝑤𝑎 = 𝑥 ⋅ 𝑤 𝑎 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ
Number of 𝑐’s in a string
## 𝜀 = 0
## 𝑤𝑐 = ## 𝑤 + 1 for 𝑤 ∈ Σ∗; 
## 𝑤𝑎 = ##(𝑤) for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ ∖ {𝑐}.



More Structural Sets
Binary Trees are another common source of structural induction.

Basis: A single node is a rooted binary tree.
Recursive Step: If 𝑇" and 𝑇# are rooted binary trees with roots 𝑟" and 𝑟#, 
then a tree rooted at a new node, with children 𝑟", 𝑟# is a binary tree.

𝑇( 𝑇)



Functions on Binary Trees
size(    )=1
size(              ) = size(𝑇") + size(𝑇#) + 1

height(   ) = 0
height(             ) = 1+max(height(𝑇"),height(𝑇#))

𝑇( 𝑇)

𝑇( 𝑇)



Structural Induction on Binary Trees
Let 𝑃 𝑇 be “size(𝑇) ≤ 2$%&'$( ) *" − 1”. We show 𝑃(𝑇) for all binary 
trees 𝑇 by structural induction.
Base Case: Let 𝑇 = . size(𝑇)=1 and height(𝑇) = 0, so size(𝑇)=1≤ 2 −
1 = 2+*" − 1 = 2$%&'$( ) *" − 1.
Inductive Hypothesis: Suppose P(𝐿) and P(𝑅) for arbitrary binary trees 
𝐿, 𝑅.
Inductive Step: Let 𝑇 = . 

𝐿 𝑅



Structural Induction on Binary Trees (cont.)
Let 𝑃 𝑇 be “size(𝑇) ≤ 2!"#$!% & '( − 1“. We show 𝑃(𝑇) for all binary trees 𝑇 by 
structural induction.
Inductive Step: Let 𝑇 = . 

height(𝑇)=1 +max{ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 , ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 }
size(𝑇)= 1 +size(𝐿)+size(𝑅)

So 𝑃(𝑇) holds, and we have 𝑃(𝑇) for all binary trees 𝑇 by the principle of 
induction.

𝐿 𝑅



Structural Induction on Binary Trees (cont.)
Let 𝑃 𝑇 be “size(𝑇) ≤ 2*+,-*. / 0( − 1“. We show 𝑃(𝑇) for all binary trees 𝑇 by structural 
induction.
Inductive Step: Let 𝑇 = . 

height(𝑇)=1 +max{ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 , ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 }
size(𝑇)= 1 +size(𝐿)+size(𝑅)
size(𝑇)=1+size(𝐿)+size 𝑅 ≤ 1 + 2*+,-*. 1 0( − 1 +2*+,-*. 2 0( −1 (by IH)

≤ 2*+,-*. 1 0( +2*+,-*. 2 0( −1 (cancel 1’s)
≤ 2*+,-*.(/) + 2*+,-*.(/) − 1 = 2*+,-*. / 0( − 1 (𝑇 taller than subtrees)

So 𝑃(𝑇) holds, and we have 𝑃(𝑇) for all binary trees 𝑇 by the principle of induction.

𝐿 𝑅



Part 3 of the course!



Course Outline
Symbolic Logic (training wheels; lectures 1-8) 
Just make arguments in mechanical ways.

Set Theory/Arithmetic (bike in your backyard; lectures 9-19)
Models of computation (biking in your neighborhood; lectures 19-30)
Still make and communicate rigorous arguments
But now with objects you haven’t used before.

-A first taste of how we can argue rigorously about computers.
Regular expressions and context free grammars – understand these “simpler 
computers”
Then: what these simple computers can do
Last week of class: what simple computers (and normal ones) can’t do.



Regular Expressions



Regular Expressions
I have a giant text document. And I want to find all the email addresses 
inside. What does an email address look like?

[some letters and numbers] @ [more letters] . [com, net, or edu]

We want to ctrl-f for a pattern of strings rather than a single string



Languages
A set of strings is called a language.

Σ∗ is a language
“the set of all binary strings of even length” is a language.
“the set of all palindromes” is a language.
“the set of all English words” is a language.
“the set of all strings matching a given pattern” is a language.



Regular Expressions
Every pattern automatically gives you a language .
The set of all strings that match that pattern.

We’ll formalize “patterns” via “regular expressions”

𝜀 is a regular expression. The empty string itself matches the pattern (and nothing 
else does).
∅ is a regular expression. No strings match this pattern. 
𝑎 is a regular expression, for any 𝑎 ∈ Σ (i.e. any character). The character itself 
matching this pattern. 



Regular Expressions
Basis:
𝜀 is a regular expression. The empty string itself matches the pattern (and nothing 
else does).
∅ is a regular expression. No strings match this pattern. 
𝑎 is a regular expression, for any 𝑎 ∈ Σ (i.e. any character). The character itself 
matching this mattern. 
Recursive
If 𝐴, 𝐵 are regular expressions then (𝐴 ∪ 𝐵) is a regular expression

matched by any string that matches 𝐴 or that matches 𝐵 [or both]).
If 𝐴, 𝐵 are regular expressions then 𝐴𝐵 is a regular expression.

matched by any string 𝑥 such that 𝑥 = 𝑦𝑧, 𝑦 matches 𝐴 and 𝑧 matches 𝐵.
If 𝐴 is a regular expression, then 𝐴∗ is a regular expression.

matched by any string that can be divided into 0 or more strings that match 𝐴.



Regular Expressions
(𝑎 ∪ 𝑏𝑐)

0 0 ∪ 1 1

0∗

0 ∪ 1 ∗



Regular Expressions
(𝑎 ∪ 𝑏𝑐)
Corresponds to {𝑎, 𝑏𝑐}
0 0 ∪ 1 1
Corresponds to {001, 011} all length three strings that start with a 0 and 
end in a 1.
0∗

Corresponds to {𝜀, 0,00,000,0000,… }
0 ∪ 1 ∗

Corresponds to the set of all binary strings.



More Examples
0∗1∗ ∗

0∗1∗

0 ∪ 1 ∗ 00 ∪ 11 ∗ 0 ∪ 1 ∗

00 ∪ 11 ∗ Fill out the poll everywhere for 
Activity Credit!

Go to pollev.com/cse311 and login 
with your UW identity



More Examples
0∗1∗ ∗

All binary strings
0∗1∗

All binary strings with any 0’s coming before any 1’s
0 ∪ 1 ∗ 00 ∪ 11 ∗ 0 ∪ 1 ∗

This is all binary strings again. Not a “good” representation, but valid.
00 ∪ 11 ∗

All binary strings where 0s and 1s come in pairs



More Practice
You can also go the other way
Write a regular expression for “the set of all binary strings of odd 
length”
0 ∪ 1 00 ∪ 01 ∪ 10 ∪ 11 ∗

Write a regular expression for “the set of all binary strings with at most 
two ones”
0∗ 1 ∪ 𝜖 0∗ 1 ∪ 𝜖 0∗

Write a regular expression for “strings that don’t contain 00”
01 ∪ 1 ∗(0 ∪ 𝜖) (key idea: all 0s followed by 1 or end of the string)



Practical Advice
Check 𝜀 and 1 character strings to make sure they’re excluded or 
included (easy to miss those edge cases). 
If you can break into pieces, that usually helps.
“nots” are hard (there’s no “not” in standard regular expressions
But you can negate things, usually by negating at a low-level. E.g. to have binary 
strings without 00, your building blocks are 1’s and 0’s followed by a 1
01 ∪ 1 ∗(0 ∪ 𝜀) then make adjustments for edge cases (like ending in 0)

Remember ∗ allows for 0 copies! To say “at least one copy” use 𝐴𝐴∗.



Regular Expressions In practice
EXTREMELY useful. Used to define valid “tokens” (like legal variable names or all known keywords when writing 
compilers/languages)
Used in grep to actually search through documents.
Pattern p = Pattern.compile("a*b"); 
Matcher m = p.matcher("aaaaab"); 
boolean b = m.matches();

^ start of string     

$ end of string

[01] a 0 or a 1     

[0-9] any single digit       

\. period    \, comma  \- minus

. any single character

ab         a followed by b           (AB)

(a|b) a or b (A È B)
a? zero or one of a          (A È e)
a* zero or more of a          A*

a+ one or more of a AA* 

e.g.   ^[\-+]?[0-9]*(\.|\,)?[0-9]+$

General form of decimal number  e.g.  9.12  or -9,8 (Europe)



Regular Expressions In Practice
When you only have ASCII characters (say in a programming language)
| usually takes the place of ∪
? (and perhaps creative rewriting) take the place of 𝜀.

E.g. 0 ∪ 𝜀 1 ∪ 10 ∗ is 0?(1|10)*



A Final Vocabulary Note
Not everything can be represented as a regular expression.
E.g. “the set of all palindromes” is not the language of any regular expression.
Some programming languages define features in their “regexes” that 
can’t be represented by our definition of regular expressions. 
Things like “match this pattern, then have exactly that substring appear later.
So before you say “ah, you can’t do that with regular expressions, I 
learned it in 311!” you should make sure you know whether your 
language is calling a more powerful object “regular expressions”.
But the more “fancy features” beyond regular expressions you use, the 
slower the checking algorithms run, (and the harder it is to force the 
expressions to fit into the framework) so this is still very useful theory.



Context Free Grammars



A Remark on languages
We said regular expressions were patterns, we often asked the question 
“does this string match this pattern?”

We could also ask “what is the set of all strings that match this pattern?
That set is called the “language of the regular expression”

Our next object answers both of these questions, but it’s 



What Can’t Regular Expressions Do?
Some easy things 
Things where you could say whether a string matches with just a loop
{0616: 𝑘 ≥ 0}
The set of all palindromes.

And some harder things
Expressions with matched parentheses
Properly formed arithmetic expressions

Context Free Grammars can solve all of these problems!



Context Free Grammars
A context free grammar (CFG) is a finite set of production rules over:
An alphabet Σ of “terminal symbols”
A finite set 𝑉 of “nonterminal symbols”
A start symbol (one of the elements of 𝑉) usually denoted 𝑆.

A production rule for a nonterminal 𝐴 ∈ 𝑉 takes the form
𝐴 → 𝑤( 𝑤) ⋯|𝑤6
Where each 𝑤, ∈ 𝑉 ∪ Σ ∗ is a string of nonterminals and terminals.



Context Free Grammars
We think of context free grammars as generating strings.
1. Start from the start symbol 𝑆.
2. Choose a nonterminal in the string, and a production rule 𝐴 →
𝑤" 𝑤# … |𝑤, replace that copy of the nonterminal with 𝑤& .
3. If no nonterminals remain, you’re done! Otherwise, goto step 2.

A string is in the language of the CFG iff it can be generated starting 
from 𝑆.



Examples
𝑆 → 0𝑆0 1𝑆1 0|1|𝜀

𝑆 → 0𝑆|𝑆1|𝜀

𝑆 → 𝑆 |𝑆𝑆|𝜀


