
Wrapping up CFGs,
Relations And Graphs

CSE 311 Winter 21
Lecture 20

Arithmetic
 𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 𝐸 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7 8|9

Generate 2 ∗ 𝑥 + 𝑦

Generate 2 + 3 ∗ 4 in two different ways

Arithmetic
 𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 𝐸 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7 8|9

Generate 2 ∗ 𝑥 + 𝑦
 𝐸 ⇒ 𝐸 + 𝐸 ⇒ 𝐸 + 𝐸 ⇒ 𝐸 ∗ 𝐸 + 𝐸 ⇒ 2 ∗ 𝐸 + 𝐸 ⇒ 2 ∗ 𝑥 + 𝐸 ⇒
(2 ∗ 𝑥 + 𝑦)
Generate 2 + 3 ∗ 4in two different ways

 𝐸 ⇒ 𝐸 + 𝐸 ⇒ 𝐸 + 𝐸 ∗ 𝐸 ⇒ 2 + 𝐸 ∗ 𝐸 ⇒ 2 + 3 ∗ 𝐸 ⇒ 2 + 3 ∗ 4
 𝐸 ⇒ 𝐸 ∗ 𝐸 ⇒ 𝐸 + 𝐸 ∗ 𝐸 ⇒ 2 + 𝐸 ∗ 𝐸 ⇒ 2 + 3 ∗ 𝐸 ⇒ 2 + 3 ∗ 4

Parse Trees
Suppose a context free grammar 𝐺 generates a string 𝑥
A parse tree of 𝑥 for 𝐺 has
Rooted at 𝑆 (start symbol)
Children of every 𝐴 node are labeled with the characters of 𝑤 for some 𝐴 → 𝑤
Reading the leaves from left to right gives 𝑥.

𝑆 → 0𝑆0 1𝑆1 0 1 𝜀

S

0 0S

S1 1

1

Back to the arithmetic
 𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 𝐸 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7 8|9

Two parse trees for 2 + 3 ∗ 4

E

E E+

∗E E2

3 4

∗

+E E

2

E

E E

3

4

How do we encode order of operations
If we want to keep “in order” we want there to be only one
possible parse tree.
Differentiate between “things to add” and “things to multiply”
Only introduce a * sign after you’ve eliminated the possibility of
introducing another + sign in that area.

 𝐸 → 𝑇|𝐸 + 𝑇
 𝑇 → 𝐹|𝑇 ∗ 𝐹
 𝐹 → 𝐸 |𝑁
 𝑁 → 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7|8|9

E

E T+

∗T F

2

F

N

T

3

F

N 4

N

CNFs in practice
Used to define programming languages.
Often written in Backus-Naur Form – just different notation
Variables are <names-in-brackets>
like <if-then-else-statement>, <condition>, <identifier>

 → is replaced with ∷= or ∶

BNF for C (no <...> and uses : instead of ::=)

Parse Trees
Remember diagramming sentences in middle school?

<sentence>::=<noun phrase><verb phrase>
<noun phrase>::=<determiner><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>

Parse Trees
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::=<determiner><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>

The old man the boat.

The old man the boat

By Jochen Burghardt - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=92742400

Power of Context Free Languages
There are languages CFGs can express that regular expressions can’t
e.g. palindromes

What about vice versa – is there a language that a regular expression
can represent that a CFG can’t?
No!

Are there languages even CFGs cannot represent?
Yes!
{0!1"2!3"|𝑗, 𝑘 ≥ 0} cannot be written with a context free grammar.

Takeaways
CFGs and regular expressions gave us ways of succinctly representing
sets of strings
Regular expressions super useful for representing things you need to search for
CFGs represent complicated languages like “java code with valid syntax”

Soon, we’ll talk about how each of these are “equivalent to weaker
computers.”

Next time: Two more tools for our toolbox.

Relations and Graphs

Relations

Wait what?
 ≤ is a relation on ℤ.
“3 ≤ 4“ is a way of saying “3 relates to 4” (for the ≤ relation)

 (3,4) is an element of the set that defines the relation.

A (binary) relation from 𝐴 to 𝑩 is a subset of 𝑨×𝑩
A (binary) relation on 𝑨 is a subset of 𝑨×𝑨

Relations

Relations, Examples
It turns out, they’ve been here the whole time

 < on ℝ is a relation
I.e. { 𝑥, 𝑦 ∶ 𝑥 < 𝑦 and 𝑥, 𝑦 ∈ ℝ}.

 = on Σ∗ is a relation
i.e. { 𝑥, 𝑦 ∶ 𝑥 = 𝑦 and 𝑥, 𝑦 ∈ Σ∗}
For your favorite function 𝑓, you can define a relation from its domain to
its co-domain
i.e. { 𝑥, 𝑦 ∶ 𝑓 𝑥 = 𝑦}
“𝑥 when squared gives 𝑦” is a relation
i.e. { 𝑥, 𝑦 : 𝑥" = 𝑦, 𝑥, 𝑦 ∈ ℝ}

Relations, Examples
Fix a universal set 𝒰.

 ⊆ is a relation. What’s it on?

𝒫(𝒰)
The set of all subsets of 𝒰

More Relations
 𝑅# = { 𝑎, 1 , 𝑎, 2 , 𝑏, 1 , 𝑏, 3 , 𝑐, 3 }
Is a relation (you can define one just by listing what relates to what)

Equivalence mod 5 is a relation.
 { 𝑥, 𝑦 ∶ 𝑥 ≡ 𝑦 𝑚𝑜𝑑 5 }
We’ll also say “x relates to y if and only if they’re congruent mod 5”

Properties of relations
What do we do with relations? Usually we prove properties about them.

Symmetry
A binary relation 𝑅 on a set 𝑺 is “symmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity
A binary relation 𝑅 on a set 𝑺 is “transitive” iff

for all 𝒂, 𝒃, 𝒄 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

= on Σ∗ is symmetric, for all 𝑎, 𝑏 ∈ Σ∗ if 𝑎 = 𝑏 then 𝑏 = 𝑎.
⊆ is not symmetric on 𝒫(𝒰) – 1,2,3 ⊆ {1,2,3,4} but 1,2,3,4 ⊈ {1,2,3}

= on Σ∗ is transitive, for all 𝑎, 𝑏, 𝑐 ∈ Σ∗ if 𝑎 = 𝑏 and 𝑏 = c then 𝑎 = 𝑐.
⊆ is transitive on 𝒫(𝒰) – for any sets 𝐴, 𝐵, 𝐶 if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 then 𝐴 ⊆ 𝐶.
∈ is not a transitive relation – 1 ∈ {1,2,3}, 1,2,3 ∈ 𝒫(1,2,3) but 1 ∉ 𝒫 1,2,3 .

Warm up
Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 ↔ 𝑛|(𝑏 − 𝑎) ↔ 𝑛𝑘 = 𝑏 − 𝑎 for 𝑘 ∈ ℤ ↔
 𝑛(−𝑘) = 𝑎 − 𝑏(for − k ∈ ℤ) ↔ 𝑛| 𝑎 − 𝑏 ↔ 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.
By definition of %, 𝑎 = 𝑞𝑛 + (𝑎%𝑛) for some integer 𝑞. Subtracting 𝑛,

 𝑎 − 𝑛 = 𝑞 − 1 𝑛 + (𝑎%𝑛). Observe that 𝑞 − 1 is an integer, and that
this is the form of the division theorem for 𝑎 − 𝑛 %𝑛. Since the division
theorem guarantees a unique integer, 𝑎 − 𝑛 %𝑛 = (𝑎%𝑛)

This was a proof that the relation { 𝒂, 𝒃 ∶ 𝒂 ≡ 𝒃 𝒎𝒐𝒅 𝒏 } is symmetric!

It was actually overkill to show if and only if. Showing just one direction
turns out to be enough!

You’ve also done a proof of transitivity!

You did this proof on HW4. You were showing:
| is a transitive relation on ℤ$.

More Properties of relations
What do we do with relations? Usually we prove properties about them.

Antisymmetry
A binary relation 𝑅 on a set 𝑺 is “antisymmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity
A binary relation 𝑅 on a set 𝑺 is “reflexive” iff

for all 𝒂 ∈ 𝑺, [𝒂, 𝒂 ∈ 𝑹]

≤ is antisymmetric on ℤ

≤≤ is reflexive on ℤ

You’ve proven antisymmetry too!

You showed | is antisymmetric on ℤ$

for all 𝑎, 𝑏 ∈ 𝑆, [𝑎, 𝑏 ∈ 𝑅 ∧ b, a ∈ 𝑅 → 𝑎 = 𝑏] is equivalent to the
definition in the box above
The box version is easier to understand, the other version is usually
easier to prove.

Antisymmetry
A binary relation 𝑅 on a set 𝑺 is “antisymmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Try a few of your own
Decide whether each of these relations are
Reflexive, symmetric, antisymmetric, and
transitive.

 ⊆ on 𝒫(𝒰)
 ≥ on ℤ
 > on ℝ
 | on ℤ$

 | on ℤ
 ≡ (𝑚𝑜𝑑 3) on ℤ

Fill out the poll everywhere for
Activity Credit!

Go to pollev.com/cse311 and login
with your UW identity

Or text cse311 to 37607

Symmetry: for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity: for all 𝒂, 𝒃, 𝒄 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

Antisymmetry: for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity: for all 𝒂 ∈ 𝑺, [𝒂, 𝒂 ∈ 𝑹]

Try a few of your own
Decide whether each of these relations are
Reflexive, symmetric, antisymmetric, and
transitive.

 ⊆ on 𝒫 𝒰 reflexive, antisymmetric, transitive
 ≥ on ℤ reflexive, antisymmetric, transitive
 > on ℝ antisymmetric, transitive
 | on ℤ$ reflexive, antisymmetric, transitive
 | on ℤ reflexive, transitive
 ≡ (𝑚𝑜𝑑 3) on ℤ reflexive, symmetric, transitive

Symmetry: for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity: for all 𝒂, 𝒃, 𝒄 ∈ 𝑺,
[𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

Antisymmetry: for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity: for all 𝒂 ∈ 𝑺, [𝒂, 𝒂 ∈ 𝑹]

Two Prototype Relations
A lot of fundamental relations follow one of two prototypes:

A relation that is reflexive, symmetric, and transitive is
called an “equivalence relation”

Equivalence Relation

A relation that is reflexive, antisymmetric, and transitive is
called a “partial order”

Partial Order Relation

Equivalence Relations
Equivalence relations “act kinda like equals”

 ≡ (mod n) is an equivalence relation.
 ≡ on compound propositions is an equivalence relation.

Fun fact: Equivalence relations “partition” their elements.
An equivalence relation 𝑅 on 𝑆 divides 𝑆 into sets 𝑆#, … 𝑆% such that.

 ∀𝑠 (𝑠 ∈ 𝑆& for some 𝑖)
 ∀𝑠, 𝑠' (𝑠, 𝑠' ∈ 𝑆& for some 𝑖 if and only if 𝑠, 𝑠' ∈ 𝑅)
 𝑆& ∩ 𝑆(= ∅ for all 𝑖 ≠ 𝑗

Partial Orders
Partial Orders “behave kinda like less than or equal to”

In the sense that they put things in order
But it’s only kinda like less than – it’s possible that some elements can’t
be compared.

 | on ℤ$ is a partial order
 ⊆ on 𝒫(𝒰) is a partial order
 𝑥 is a prerequisite of (or-equal-to) 𝑦 is a partial order on CSE courses

Why Bother?
If you prove facts about all equivalence relations or all partial orders,
you instantly get facts in lots of different contexts.
If you learn to recognize partial orders or equivalence relations, you can
get a lot of intuition for new concepts in a short amount of time.

Combining Relations
Given a relation 𝑅 from 𝐴 to 𝐵
And a relation 𝑆 from 𝐵 to 𝐶,

The relation 𝑆 ∘ 𝑅 from 𝐴 to 𝐶 is
 { 𝑎, 𝑐 ∶ ∃𝑏[𝑎, 𝑏 ∈ 𝑅 ∧ 𝑏, 𝑐 ∈ 𝑆]}

Yes, I promise it’s 𝑆 ∘ 𝑅 not 𝑅 ∘ 𝑆 – it makes more sense if you think
about relations (𝑥, 𝑓 𝑥) and (𝑥, 𝑔 𝑥)
But also don’t spend a ton of energy worrying about the order, we
almost always care about 𝑅 ∘ 𝑅, where order doesn’t matter.

Combining Relations
To combine relations, it’s a lot easier if we can see what’s happening.

We’ll use a representation of a directed graph

Directed Graphs
 𝐺 = (𝑉, 𝐸)
 𝑉 is a set of vertices (an underlying set of elements)
 𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next).

Path 𝑣!, 𝑣", … , 𝑣# such that 𝑣$, 𝑣$%" ∈ 𝐸
Simple Path: path with all 𝑣$ distinct
Cycle: path with 𝑣! = 𝑣# (and 𝑘 > 0)
Simple Cycle: simple path plus edge
(𝑣# , 𝑣!) with 𝑘 > 0

Directed Graphs
 𝐺 = (𝑉, 𝐸)
 𝑉 is a set of vertices (an underlying set of elements)
 𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next).

Path 𝑣!, 𝑣", … , 𝑣# such that 𝑣$, 𝑣$%" ∈ 𝐸
Simple Path: path with all 𝑣$ distinct
Cycle: path with 𝑣! = 𝑣# (and 𝑘 > 0)
Simple Cycle: simple path plus edge
(𝑣# , 𝑣!) with 𝑘 > 0

Directed Graphs
 𝐺 = (𝑉, 𝐸)
 𝑉 is a set of vertices (an underlying set of elements)
 𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next).

Path 𝑣!, 𝑣", … , 𝑣# such that 𝑣$, 𝑣$%" ∈ 𝐸
Simple Path: path with all 𝑣$ distinct
Cycle: path with 𝑣! = 𝑣# (and 𝑘 > 0)
Simple Cycle: simple path plus edge
(𝑣# , 𝑣!) with 𝑘 > 0

Directed Graphs
 𝐺 = (𝑉, 𝐸)
 𝑉 is a set of vertices (an underlying set of elements)
 𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next).

Path 𝑣!, 𝑣", … , 𝑣# such that 𝑣$, 𝑣$%" ∈ 𝐸
Simple Path: path with all 𝑣$ distinct
Cycle: path with 𝑣! = 𝑣# (and 𝑘 > 0)
Simple Cycle: simple path plus edge
(𝑣# , 𝑣!) with 𝑘 > 0

Representing Relations
To represent a relation 𝑅 on a set A, have a vertex for each element of 𝐴
and have an edge (𝑎, 𝑏) for every pair in 𝑅.

Let 𝐴 be {1,2,3,4} and 𝑅 be { 1,1 , 1,2 , 2,1 , 2,3 , 3,4 }

1

3 4

2

Combining Relations
If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑺 ∘ 𝑹 i.e. every pair (𝑎, 𝑐) with a 𝑏 with 𝑎, 𝑏 ∈ 𝑅 and 𝑏, 𝑐 ∈ 𝑆

1

3

2 1

3

2

Combining Relations

1

3

2 1

3

2

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑺 ∘ 𝑹 i.e. every pair (𝑎, 𝑐) with a 𝑏 with 𝑎, 𝑏 ∈ 𝑅 and 𝑏, 𝑐 ∈ 𝑆

Combining Relations
Let 𝑅 be a relation on 𝐴.
Define 𝑅) as { 𝑎, 𝑎 ∶ 𝑎 ∈ 𝐴}

 𝑅% = 𝑅%*# ∘ 𝑅
 𝑎, 𝑏 ∈ 𝑅% if and only if there is a path of length 𝑘 from 𝑎 to 𝑏 in 𝑅.
We can find that on the graph!

More Powers of 𝑅.
For two vertices in a graph, 𝑎 can reach 𝑏 if there is a path from 𝑎 to 𝑏.

Let 𝑅 be a relation on the set 𝐴. The connectivity relation 𝑅∗ consists of
all pairs (𝑎, 𝑏) such that 𝑎 can reach 𝑏 (i.e. there is a path from 𝑎 to 𝑏 in
𝑅)

 𝑅∗ = ⋃ 𝑅%+
%,)

Note we’re starting from 0 (the textbook makes the unusual choice of
starting from 𝑘 = 1).

What’s the point of 𝑅∗

 𝑅∗ is also the “reflexive-transitive closure of 𝑅.

It answers the question “what’s the minimum amount of edges I would
need to add to 𝑅 to make it reflexive and transitive.

Why care about that? The transitive-reflexive closure can be a summary
of data – you might want to precompute it so you can easily check if 𝑎
can reach 𝑏 instead of recomputing it every time.

Relations and Graphs
Describe how each property will show up in the graph of a relation.
Reflexive

Symmetric

Antisymmetric

Transitive

Relations and Graphs
Describe how each property will show up in the graph of a relation.
Reflexive

Symmetric

Antisymmetric

Transitive

Every vertex has a “self-loop” (an edge from the vertex to itself)

Every edge has its “reverse edge” (going the other way) also in the graph.

No edge has its “reverse edge” (going the other way) also in the graph.

If there’s a length-2 path from 𝑎 to 𝑏 then there’s a direct edge from 𝑎 to 𝑏

