
Uncountability and the 
Halting Problem



Takeaway 1
There are differing levels of infinity.
Some infinite sets are equal in size.
Other infinite sets are bigger than others. 

If this is mind-bending you’re in good company.
Cantor’s contemporaries accused him of being a “scientific charlatan” 
and a “corruptor of youth”
But Cantor was right – and his ideas eventually were recognized as 
correct.



Let’s Do Another!
Let 𝐵 = 0,1 . Call a function 𝑔:ℕ → 𝐵 a “binary valued function”

Intuitively, 𝑔 would be something like
public boolean g(int input){ }

If we could write that 𝑔 in Java.

How many possible 𝑔:ℕ → 𝐵 are there?



Proof that [0,1) set of binary-valued 
functions is not countable
Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection
from ℕ to 
function

Output 
on 𝟎

Output 
on 1

Output 
on 2

Output 
on 3

Output 
on 4

Output 
on 5

Output 
on 6

Output 
on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …



Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection
from ℕ to 
function

Output 
on 𝟎

Output 
on 1

Output 
on 2

Output 
on 3

Output 
on 4

Output 
on 5

Output 
on 6

Output 
on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …

Goal: find a function 𝑔/012: ℕ → 0,1
that isn’t on our table.

(contradiction to bijection)

Proof that [0,1) set of binary-valued functions 
is not countable



Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection
from ℕ to 
function

Output 
on 𝟎

Output 
on 1

Output 
on 2

Output 
on 3

Output 
on 4

Output 
on 5

Output 
on 6

Output 
on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …

How do we find a function not on 
our list?

Well to make sure it’s not 𝑓(0) (the 
function in the first row)

Have 𝑔/012 0 = 0

Proof that [0,1) set of binary-valued functions 
is not countable

𝑔/012 𝑥 = -
0 𝑖𝑓 𝑥 = 1

…
…



Suppose, for the sake of contradiction, that there is a list of them:
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𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …

How do we find a function not on 
our list?

Well to make sure it’s not 𝑓(0) (the 
function in the first row)

Have 𝑔/012 0 = 0

Proof that [0,1) set of binary-valued functions 
is not countable

𝑔/012 𝑥 = -
0 𝑖𝑓 𝑥 = 1

…
…



Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection
from ℕ to 
function

Output 
on 𝟎

Output 
on 1

Output 
on 2

Output 
on 3

Output 
on 4

Output 
on 5

Output 
on 6

Output 
on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …

How do we find a function not on 
our list?

Well to make sure it’s not 𝑓(𝑖) (the 
function in the 𝑖34 row)

Have 𝑔/012 𝑖 = 1 − 𝑓 𝑖 𝑖

Proof that [0,1) set of binary-valued functions 
is not countable

𝑔/012 𝑥 = -
0 𝑖𝑓 𝑥 = 1

…
…



Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection
from ℕ to 
function

Output 
on 𝟎

Output 
on 1

Output 
on 2

Output 
on 3

Output 
on 4

Output 
on 5

Output 
on 6

Output 
on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …

How do we find a function not on 
our list?

Well to make sure it’s not 𝑓(𝑖) (the 
function in the 𝑖34 row)

Have 𝑔/012 𝑖 = 1 − 𝑓 𝑖 𝑖

Proof that [0,1) set of binary-valued functions 
is not countable

𝑔/012 𝑥 = -
1 𝑖𝑓 𝑓 𝑥 outputs 0 on input 𝑥
0 𝑖𝑓 𝑓 𝑥 outputs 0 on input 𝑥



Wrapping up the proof
Wrapping up the proof.

Observe that 𝑔!"#$ is a fully-defined function, and that it has ℕ as its 
domain and {0,1} as its codomain. It therefore should be in the co-
domain of 𝑓. But it cannot be on the list, as 𝑔(𝑖) is different from the 
function in the  𝑖%& row on input 𝑖 for all 𝑖.

This contradicts 𝑓 being onto! So we have that the set of binary-valued 
functions (with ℕ as their domains) is uncountable.



Our second big takeaway
How many Java methods can we write:

public boolean g(int input) ?

Can you list them?
Yeah!! Put them in lexicographic order
i.e. in increasing order of length, with ties broken by alphabetical order.

Wait…that means the number of such Java programs is countable.
And…the number of functions we’re supposed to write is uncountable.



Our Second big takeaway
There are more functions 𝑔:ℕ → 𝐵 than there are Java programs to 
compute them.

Some function must be uncomputable.
That is there is no piece of code which tells you the output of the 
function when you give it the appropriate input. 



This isn’t just about java programs. (all we used about java was that its 
programs are strings)…that’s…well every programming language.

There are functions that simply cannot be computed.
Doesn’t matter how clever you are. How fancy your new programming 
language is. Just doesn’t work.*

*there’s a difference between int and ℕ here, for the proof to work you 
really need all integers to be valid inputs, not just integers in a certain range.



Does this matter?
It’s even worse than that – almost all functions are not computable.

So…how come this has never happened to you?

This might not be meaningful yet. Almost all functions are also 
inexpressible in a finite amount of English (English is a language too!)
You’ve probably never decided to write a program that computes a 
function you couldn’t describe in English…
Are there any problems anyone is interested in solving that aren’t 
computable?



A Practical Uncomputable Problem
Every pressed the run button on your code and have it take a long 
time?

Like an infinitely long time?

What didn’t your compiler…like, tell you not to push the button yet. 
It tells you when your code doesn’t compile before it runs it…why 
doesn’t it check for infinite loops?



The Halting Problem

This would be super useful to solve!

We can’t solve it…let’s find out why.

Given: source code for a program 𝑷 and 𝒙 an input we could give to 𝑷
Return: True if 𝑷 will halt on 𝒙, False if it runs forever (e.g. goes in an 
infinite loop or infinitely recurses)

The Halting Problem



A Proof By Contradiction
Suppose, for the sake of contradiction, there is a program 𝐻, which 
given input P.java, 𝑥 will accurately report 
“𝑃 would halt when run with input 𝑥” or
“𝑃 will run forever on input 𝑥.”

Important: 𝐻 does not just compile P.java and run it. To count, 𝐻
needs to return “halt” or “doesn’t” in a finite amount of time. 
And remember, it’s not a good idea to say “but 𝐻 has to run P.java to tell 
if it’ll go into an infinite loop” that’s what we’re trying to prove!!



A Very Tricky Program.
Diagonal.java(String x){

Run H.exe on input <x, x>

if(H.exe says “x halts on x”)

while(true){//Go into an infinite loop

int x=2+2;

}

else //H.exe says “x doesn’t halt on x”

return; //halt. 

}



So, uhh that’s a weird program.
What do we do with it?
USE IT TO BREAK STUFF
Does Diagonal.java halt when its input is Diagonal.java?

Let’s assume it does and see what happens…



A Very Tricky Program.
Diagonal.java(String x){

Run H.exe on input <x, x>

if(H.exe says “x halts on x”)

while(true){//Go into an infinite loop

int x=2+2;

}

else //H.exe says “x doesn’t halt on x”

return; //halt. 

}

Imagine Diagonal.java halts on 
Diagonal.java.

Then H better say it halts. 
So it goes into an infinite loop.

Wait shoot.



So, uhh that’s a weird program.
What do we do with it?
USE IT TO BREAK STUFF
Does Diagonal.java halt when its input is Diagonal.java?

Let’s assume it does and see what happens…
That didn’t work.

Let’s assume it doesn’t and see what happens…



A Very Tricky Program.
Diagonal.java(String x){

Run H.exe on input <x, x>

if(H.exe says “x halts on x”)

while(true){//Go into an infinite loop

int x=2+2;

}

else //H.exe says “x doesn’t halt on x”

return; //halt. 

}

Imagine Diagonal.java doesn’t 
halt on Diagonal.java.

Then H better say it doesn’t halt. 
So we go into the else branch.

And it halts

Wait shoot.



So, uhh that’s a weird program.
What do we do with it?
USE IT TO BREAK STUFF
Does Diagonal.java halt when its input is Diagonal.java?

Let’s assume it does and see what happens…
That didn’t work.
Let’s assume it doesn’t and see what happens…
That didn’t work either.
There’s no third option. It either halts or it doesn’t. And it doesn’t do 
either. That’s a contradiction! H.exe can’t exist.



So…
So there is no general-purpose algorithm that decides whether any 
input program (on any input string).

The Halting Problem is undecidable (i.e. uncomputable) there is no 
algorithm that solves every instance of the problem correctly.



What that does and doesn’t mean
That doesn’t mean that there aren’t algorithms that often get the 
answer right
For example, if there’s no loops, no recursion, and no method calls, it definitely 
halts. No problem with that kind of program existing.

This isn’t just a failure of computers – if you think you can do this by 
hand, well…
…you cant either.



Takeaways
Don’t expect that there’s a better IDE/better compiler/better 
programming language coming that will make it possible to tell if your 
code is going to hit an infinite loop.

It’s not coming. 



More Uncomputable problems
Imagine we gave the following task to 142 students:

Write a program that prints “Hello World” 

Can you make an autograder?

Technically…NO! 



More Uncomputable problems
Imagine we gave the following task to 142 students:

Write a program that prints “Hello World” 

Can you make an autograder?

Technically…NO!
In practice, we declare the program wrong if it runs for 1 minute or so. 
That’s not right 100% of the time, but it’s good enough for your 
programming classes. 



How Would we prove that?
With a reduction

Suppose, for the sake of contradiction, I can solve the HelloWorld 
problem. (i.e. on input P.java I can tell whether it eventually prints 
HelloWorld)
Let W.exe solve that problem. 

Consider this program…



A Reduction
Trick(P,x){

Run P on x, //(but only simulate printing if P prints things)
Print “Hello World”

}

This actually prints “hello world” iff P halts on x. 
Plug Trick into W and….we solved the Halting Problem!



Reductions in General
The big idea for reductions is “reusing code”
Just like calling a library
But doing it in contrapositive form.

Instead of
“If I have a library, then I can solve a new problem” reductions do the 
contrapositive:
“If I can solve a problem I know I shouldn’t be able to, then that library 
function can’t exist” 



Fun (Scary?) Fact
Rice’s Theorem

Says any “non-trivial” behavior of programs cannot be computed (in 
finite time). 



What Comes next?
CSE 312 (foundations II)
Fewer proofs L
Basics of probability theory (super useful in algorithms, ML, and just everyday 
life). Fundamental statistics.
CSE 332 (data structures and parallelism) 
Data structures, a few fundamental algorithms, parallelism.
Graphs. Graphs everywhere.
Also, induction. [same for 421, 422 the algorithms courses]
CSE 431 (complexity theory)
What can’t you do with computers in a reasonable amount of time.
Beautiful theorems – more on CFGs, DFAs/NFAs as well.



We’ve Covered A LOT
Propositional Logic. 
Boolean logic and circuits.
Boolean algebra.
Predicates, quantifiers and predicate logic.
Inference rules and formal proofs for propositional and predicate logic.
English proofs.
Set theory.
Modular arithmetic.
Prime numbers.
GCD, Euclid's algorithm and modular inverse

You’ll use quantifiers in 332 to define big-O

431 is basically 10 weeks of fun set proofs.

Interested in crypto? They’ll come back.



No really. A lot
Induction and Strong Induction.
Recursively defined functions and sets.
Structural induction.
Regular expressions.
Context-free grammars and languages.
Relations and composition.
Transitive-reflexive closure.
Graph representation of relations and their closures.

Lots of induction proof [sketches] in 332

You’ll see these in compilers

You’ll use graphs at least once a week for 
the rest of your CS career. 



Like A lot a lot.
DFAs, NFAs and language recognition.
Cross Product construction for DFAs.
Finite state machines with outputs at states.
Conversion of regular expressions to NFAs.
Powerset construction to convert NFAs to DFAs.
Equivalence of DFAs, NFAs, Regular Expressions 
Method to prove languages not accepted by DFAs.
Cardinality, countability and diagonalization
Undecidability: Halting problem and evaluating properties of programs.

Promise you won’t ever try to solve the Halting Problem? It’s 
tempting to try to sometimes if you don’t remember it’s 

undecidable


