
Section 02: Solutions

1. Truth Tables

Write a truth table for each of the following:

(a) (p⊕ q) ∨ (p⊕ ¬q) Solution:

p q p⊕ q p⊕ ¬q (p⊕ q) ∨ (p⊕ ¬q)

T T F T T
T F T F T
F T T F T
F F F T T

(b) (p ∨ q) → (p⊕ q) Solution:

p q p ∨ q p⊕ q (p ∨ q) → (p⊕ q)

T T T F F
T F T T T
F T T T T
F F F F T

(c) p ↔ ¬p Solution:

p ¬p p ↔ ¬p

T F F
F T F

2. Non-equivalence

Prove that the following pairs of propositional formulae are not equivalent by finding inputs they differ on.

(a) p → q vs. q → p Solution:

When p = T and q = F, then p → q ≡ F, but q → p ≡ T.

(b) p → (q ∧ r) vs. (p → q) ∧ r Solution:

When p = F and r = F, then p → (q ∧ r) ≡ T (by vacuous truth), but (p → q) ∧ r ≡ F (because r is false).

1



3. Circuitous

Translate the following circuit into a logical expression.

q

p NOT

NOT AND

OR NOT OUT

Solution:

¬(¬p ∨ (p ∧ ¬q))

4. Equivalences

Prove that each of the following pairs of propositional formulae are equivalent using propositional equivalences.

(a) p ↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q) You may use the rule p ↔ q ≡ (p → q) ∧ (q → p). Solution:

p ↔ q ≡ (p → q) ∧ (q → p) [iff is two implications]

≡ (¬p ∨ q) ∧ (q → p) [Law of Implication]

≡ (¬p ∨ q) ∧ (¬q ∨ p) [Law of Implication]

≡ ((¬p ∨ q) ∧ ¬q) ∨ ((¬p ∨ q) ∧ p) [Distributivity]

≡ (¬q ∧ (¬p ∨ q)) ∨ ((¬p ∨ q) ∧ p) [Commutativity]

≡ ((¬q ∧ ¬p) ∨ (¬q ∧ q)) ∨ ((¬p ∨ q) ∧ p) [Distributivity]

≡ ((¬p ∧ ¬q) ∨ (¬q ∧ q)) ∨ ((¬p ∨ q) ∧ p) [Commutativity]

≡ ((¬p ∧ ¬q) ∨ (q ∧ ¬q)) ∨ ((¬p ∨ q) ∧ p) [Commutativity]

≡ ((¬p ∧ ¬q) ∨ (q ∧ ¬q)) ∨ (p ∧ (¬p ∨ q)) [Commutativity]

≡ ((¬p ∧ ¬q) ∨ (q ∧ ¬q)) ∨ ((p ∧ ¬p) ∨ (p ∧ q)) [Distributivity]

≡ ((¬p ∧ ¬q) ∨ F ) ∨ ((p ∧ ¬p) ∨ (p ∧ q)) [Negation]

≡ ((¬p ∧ ¬q) ∨ F ) ∨ (F ∨ (p ∧ q)) [Negation]

≡ (¬p ∧ ¬q) ∨ (F ∨ (p ∧ q)) [Identity]

≡ (¬p ∧ ¬q) ∨ ((p ∧ q) ∨ F ) [Commutativity]

≡ (¬p ∧ ¬q) ∨ (p ∧ q) [Identity]

≡ (p ∧ q) ∨ (¬p ∧ ¬q) [Commutativity]

(b) ¬p → (q → r) ≡ q → (p ∨ r) Solution:

2



¬p → (q → r) ≡ ¬¬p ∨ (q → r) [Law of Implication]

≡ p ∨ (q → r) [Double Negation]

≡ p ∨ (¬q ∨ r) [Law of Implication]

≡ (p ∨ ¬q) ∨ r [Associativity]

≡ (¬q ∨ p) ∨ r [Commutativity]

≡ ¬q ∨ (p ∨ r) [Associativity]

≡ q → (p ∨ r) [Law of Implication]

5. Boolean Algebra

For each of the following parts, write the logical expression using boolean algebra operators. Then, simplify it using
axioms and theorems of boolean algebra.

(a) ¬p ∨ (¬q ∨ (p ∧ q)) Solution:

First, we replace ¬,∨, and ∧. This gives us p′ + q′ + pq; note that the parentheses are not necessary in
boolean algebra, because the operations are all commutative and associative. We can use DeMorgan’s laws
to get the slightly simpler (pq)′+pq. Then, we can use commutativity to get pq+(pq)′ and complementarity
to get 1. (Note that this is another way of saying the formula is a tautology.)

(b) ¬(p ∨ (q ∧ p)) Solution:

First, we replace ¬,∨, and ∧ with their corresponding boolean operators, giving us (p + (qp))′. Applying
DeMorgan’s laws once gives us p′(qp)′, and a second time gives us p′(q′ + p′), which is p′(p′ + q′) by
commutativity. By absorbtion, this is simply p′.

6. Canonical Forms

Consider the boolean functions F (A,B,C) and G(A,B,C) specified by the following truth table:

A B C F (A,B,C) G(A,B,C)

1 1 1 1 0
1 1 0 1 1
1 0 1 0 0
1 0 0 0 0
0 1 1 1 1
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

(a) Write the DNF and CNF expressions for F (A,B,C). Solution:

3



DNF: ABC +ABC ′ +A′BC +A′BC ′ +A′B′C ′

CNF: (A′ +B + C ′)(A′ +B + C)(A+B + C ′)

(b) Write the DNF and CNF expressions for G(A,B,C). Solution:

DNF: ABC ′ +A′BC +A′B′C
CNF: (A′ +B′ + C ′)(A′ +B + C ′)(A′ +B + C)(A+B′ + C)(A+B + C)

7. Translate to Logic

Express each of these system specifications using predicates, quantifiers, and logical connectives. For some of these
problems, more than one translation will be reasonable depending on your choice of predicates.

(a) Every user has access to an electronic mailbox. Solution:

Let the domain be users and mailboxes. Let User(x) be “x is a user”, let Mailbox(y) be “y is a mailbox”,
and let Access(x, y) be “x has access to y”.

∀x (User(x) → (∃y (Mailbox(y) ∧ Access(x, y))))

(b) The system mailbox can be accessed by everyone in the group if the file system is locked. Solution:

Solution 1: Let the domain be people in the group. Let CanAccessSM(x) be “x has access to the system
mailbox”. Let p be the proposition “the file system is locked.”

p → ∀x CanAccessSM(x).

Solution2: Let the domain be people and mailboxes and use Access(x, y) as defined in the solution to
part (a), and then also add InGroup(x) for “x is in the group”, and let SystemMailBox be the name for the
system mailbox. Then the translation becomes

FileSystemLocked → ∀x (InGroup(x) → Access(x, SystemMailBox)).

(c) The firewall is in a diagnostic state only if the proxy server is in a diagnostic state.

Solution:

Let the domain be all applications. Let Firewall(x) be “x is the firewall”, and let ProxyServer(x) be “x is
the proxy server.” Let Diagnostic(x) be “x is in a diagnostic state”.

∀x ∀y ((Firewall(x) ∧ Diagnostic(x)) → (ProxyServer(y) → Diagnostic(y))

4



(d) At least one router is functioning normally if the throughput is between 100kbps and 500 kbps and the proxy
server is not in diagnostic mode. Solution:

Let the domain be all applications and routers. Let Router(x) be “x is a router”, and let ProxyServer(x)
be “x is the proxy server.” Let Diagnostic(x) be “x is in a diagnostic state”. Let p be “the throughput is
between 100kbps and 500 kbps”. Let Functioning(y) be “y is functioning normally”.

(p ∧ ∀x (¬ ProxyServer(x) ∨ ¬ Diagnostic(x))) → ∃y (Router(y) ∧ Functioning(y))

8. Translate to English

Translate these system specifications into English where F (p) is “Printer p is out of service”, B(p) is “Printer p is
busy”, L(j) is “Print job j is lost,” and Q(j) is “Print job j is queued”. Let the domain be all printers and all print
jobs.

(a) ∃p (F (p) ∧B(p)) → ∃j L(j) Solution:

If at least one printer is busy and out of service, then at least one job is lost.

(b) (∀j B(j)) → (∃p Q(p)) Solution:

If all printers are busy, then there is a queued job.

(c) ∃j (Q(j) ∧ L(j)) → ∃p F (p) Solution:

If there is a queued job that is lost, then a printer is out of service.

(d) (∀p B(p) ∧ ∀j Q(j)) → ∃j L(j) Solution:

If all printers are busy and all jobs are queued, then there is some lost job.

5


	1 Truth Tables
	2 Non-equivalence
	3 Circuitous
	4 Equivalences
	5 Boolean Algebra
	6 Canonical Forms
	7 Translate to Logic
	8 Translate to English

