## Section 09: Solutions

### 1. Relations

(a) Draw the transitive-reflexive closure of  $\{(1,2),(2,3),(3,4)\}$ . **Solution:** 



(b) Suppose that R is reflexive. Prove that  $R \subseteq R^2$ .

#### **Solution:**

Suppose  $(a,b) \in R$ . Since R is reflexive, we know  $(b,b) \in R$  as well. Since there is a b such that  $(a,b) \in R$  and  $(b,b) \in R$ , it follows that  $(a,b) \in R^2$ . Thus,  $R \subseteq R^2$ .

(c) Consider the relation  $R = \{(x,y) : x = y+1\}$  on  $\mathbb{N}$ . Is R reflexive? Transitive? Symmetric? Anti-symmetric? Solution:

It isn't reflexive, because  $1 \neq 1+1$ ; so,  $(1,1) \notin R$ . It isn't symmetric, because  $(2,1) \in R$  (because 2=1+1), but  $(1,2) \notin R$ , because  $1 \neq 2+1$ . It isn't transitive, because note that  $(3,2) \in R$  and  $(2,1) \in R$ , but  $(3,1) \notin R$ . It is anti-symmetric, because consider  $(x,y) \in R$  such that  $x \neq y$ . Then, x=y+1 by definition of R. However,  $(y,x) \notin R$ , because  $y=x-1 \neq x+1$ .

(d) Consider the relation  $S=\{(x,y): x^2=y^2\}$  on  $\mathbb R$ . Prove that S is reflexive, transitive, and symmetric. Solution:

Consider  $x \in \mathbb{R}$ . Note that by definition of equality,  $x^2 = x^2$ ; so,  $(x, x) \in S$ ; so, S is reflexive.

Consider  $(x,y) \in S$ . Then,  $x^2 = y^2$ . It follows that  $y^2 = x^2$ ; so,  $(y,x) \in S$ . So, S is symmetric.

Suppose  $(x,y) \in S$  and  $(y,z) \in S$ . Then,  $x^2 = y^2$ , and  $y^2 = z^2$ . Since equality is transitive,  $x^2 = z^2$ . So,  $(x,z) \in S$ . So, S is transitive.

1

## 2. DFAs, Stage 1

Construct DFAs to recognize each of the following languages. Let  $\Sigma = \{0, 1, 2, 3\}$ .

(a) All binary strings.

### **Solution:**



 $q_0$ : binary strings

 $q_1$ : strings that contain a character which is not 0 or 1.

(b) All strings whose digits sum to an even number.

### **Solution:**



(c) All strings whose digits sum to an odd number.

### **Solution:**



# 3. DFAs, Stage 2

Construct DFAs to recognize each of the following languages. Let  $\Sigma = \{0, 1\}$ .

(a) All strings which do not contain the substring 101.

### **Solution:**



 $q_3$ : string that contain 101.

 $q_2$ : strings that don't contain 101 and end in 10.

 $q_1$ : strings that don't contain 101 and end in 1.

 $q_0$ :  $\varepsilon$ , 0, strings that don't contain 101 and end in 00.

(b) All strings containing at least two 0's and at most one 1. **Solution:** 



(c) All strings containing an even number of 1's and an odd number of 0's and not containing the substring 10. **Solution:** 



## 4. NFAs

(a) What language does the following NFA accept?



### **Solution:**

All strings of only 0's and 1's not containing more than one 1.

(b) Create an NFA for the language "all binary strings that have a 1 as one of the last three digits". **Solution:** 

The following is one such NFA:



### 5. DFAs & Minimization

Note: We will not test you on minimization, although you may optionally read the extra slides and do this problem for fun

(a) Convert the NFA from 1a to a DFA, then minimize it.

### **Solution:**



Here is the minimized form:



(b) Minimize the following DFA:



**Solution:** 

- **Step 1:**  $q_0, q_2$  are final states and the rest are not final. So, we start with the initial partition with the following groups: group 1 is  $\{q_0, q_2\}$  and group 2 is  $\{q_1, q_3, q_4\}$ .
- **Step 2:**  $q_1$  is sending a to group 1 while  $q_3, q_4$  are sending a to group 2. So, we divide group 2. We get the following groups: group 1 is  $\{q_0, q_2\}$ , group 3 is  $\{q_1\}$  and group 4 is  $\{q_3, q_4\}$ .
- **Step 3:**  $q_0$  is sending a to group 3 and  $q_2$  is sending a to group 4. So, we divide group 1. We will have the following groups: group 3 is  $\{q_1\}$ , group 4 is  $\{q_3, q_4\}$ , group 5 is  $\{q_0\}$  and group 6 is  $\{q_2\}$ .

The minimized DFA is the following:

